ﻻ يوجد ملخص باللغة العربية
Inspired by recent discussions of inverse magnetic catalysis in the literature, we examine the effects of a uniform external magnetic field on the chiral phase transition in quenched ladder QED at nonzero chemical potential. In particular, we study the behaviour of the effective potential as the strength of the magnetic field is varied while the chemical potential is held constant. For a certain range of the magnetic field, the effective potential develops a local maximum. Inverse magnetic catalysis is observed at this maximum, whereas the usual magnetic catalysis is observed at the true minimum of the effective potential.
We consider chiral symmetry breaking at nonzero chemical potential and discuss the relation with the spectrum of the Dirac operator. We solve the so called Silver Blaze Problem that the chiral condensate at zero temperature does not depend on the che
The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellat
The relation between the spectral density of the QCD Dirac operator at nonzero baryon chemical potential and the chiral condensate is investigated. We use the analytical result for the eigenvalue density in the microscopic regime which shows oscillat
Lattice QCD at finite chemical potential is difficult due to the sign problem. We use stochastic quantization and complex Langevin dynamics to study this issue. First results for QCD in the hopping expansion are encouraging. U(1) and SU(3) one link m
The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions, a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the