ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimising Spectroscopic and Photometric Galaxy Surveys: Same-sky Benefits for Dark Energy and Modified Gravity

95   0   0.0 ( 0 )
 نشر من قبل Donnacha Kirk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.



قيم البحث

اقرأ أيضاً

The next generation of spectroscopic surveys will have a wealth of photometric data available for use in target selection. Selecting the best targets is likely to be one of the most important hurdles in making these spectroscopic campaigns as success ful as possible. Our ability to measure dark energy depends strongly on the types of targets that we are able to select with a given photometric data set. We show in this paper that we will be able to successfully select the targets needed for the next generation of spectroscopic surveys. We also investigate the details of this selection, including optimisation of instrument design and survey strategy in order to measure dark energy. We use color-color selection as well as neural networks to select the best possible emission line galaxies and luminous red galaxies for a cosmological survey. Using the Fisher matrix formalism we forecast the efficiency of each target selection scenario. We show how the dark energy figures of merit change in each target selection regime as a function of target type, survey time, survey density and other survey parameters. We outline the optimal target selection scenarios and survey strategy choices which will be available to the next generation of spectroscopic surveys.
Despite two decades of tremendous experimental and theoretical progress, the riddle of the accelerated expansion of the Universe remains to be solved. On the experimental side, our understanding of the possibilities and limitations of the major dark energy probes has evolved; here we summarize the major probes and their crucial challenges. On the theoretical side, the taxonomy of explanations for the accelerated expansion rate is better understood, providing clear guidance to the relevant observables. We argue that: i) improving statistical precision and systematic control by taking more data, supporting research efforts to address crucial challenges for each probe, using complementary methods, and relying on cross-correlations is well motivated; ii) blinding of analyses is difficult but ever more important; iii) studies of dark energy and modified gravity are related; and iv) it is crucial that R&D for a vibrant dark energy program in the 2030s be started now by supporting studies and technical R&D that will allow embryonic proposals to mature. Understanding dark energy, arguably the biggest unsolved mystery in both fundamental particle physics and cosmology, will remain one of the focal points of cosmology in the forthcoming decade.
We study the importance of gravitational lensing in the modelling of the number counts of galaxies. We confirm previous results for photometric surveys, showing that lensing cannot be neglected in a survey like LSST since it would infer a significant shift of cosmological parameters. For a spectroscopic survey like SKA2, we find that neglecting lensing in the monopole, quadrupole and hexadecapole of the correlation function also induces an important shift of parameters. For ${Lambda}$CDM parameters, the shift is moderate, of the order of 0.6${sigma}$ or less. However, for a model-independent analysis, that measures the growth rate of structure in each redshift bin, neglecting lensing introduces a shift of up to 2.3${sigma}$ at high redshift. Since the growth rate is directly used to test the theory of gravity, such a strong shift would wrongly be interpreted as the breakdown of General Relativity. This shows the importance of including lensing in the analysis of future surveys. On the other hand, for a survey like DESI, we find that lensing is not important, mainly due to the value of the magnification bias parameter of DESI, $s(z)$, which strongly reduces the lensing contribution at high redshift. We also propose a way of improving the analysis of spectroscopic surveys, by including the cross-correlations between different redshift bins (which is neglected in spectroscopic surveys) from the spectroscopic survey or from a different photometric sample. We show that including the cross-correlations in the SKA2 analysis does not improve the constraints. On the other hand replacing the cross-correlations from SKA2 by cross-correlations measured with LSST improves the constraints by 10 to 20 %. Interestingly, for ${Lambda}$CDM parameters, we find that LSST and SKA2 are highly complementary, since they are affected differently by degeneracies between parameters.
We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG), beyond the cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansio ns of the equation of state, principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories and coupled DE. In addition to the latest Planck data, for our main analyses we use baryonic acoustic oscillations, type-Ia supernovae and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations are in agreement with LCDM. When testing models that also change perturbations (even when the background is fixed to LCDM), some tensions appear in a few scenarios: the maximum one found is sim 2 sigma for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to at most 3 sigma when external data sets are included. It however disappears when including CMB lensing.
We use growth of structure data to constrain the effective field theory of dark energy. Considering as case study Horndeski theories with the speed of gravitational waves equal to that of light, we show how constraints on the free parameters and the large-scale structure phenomenological functions can be improved by two ingredients: firstly by complementing the set of redshift-space distortions data with the three recent measurements of the growth rate $f$ and the amplitude of matter fluctuations $sigma_8$ from the VIPERS and SDSS collaborations; secondly by applying a local Solar System bound on the variation of the Newton constant. This analysis allows us to conclude that: $i)$ despite firmly restricting the predictions of weaker gravity, the inclusion of the Solar System bound does not prevent suppressed growth relative to the standard model $Lambda$CDM at low redshifts; $ii)$ the same bound in conjunction with the growth of structure data strongly restricts the redshift evolution of the gravitational slip parameter to be close to unity and the present value is constrained to one at the $10^{-3}$ level; $iii)$ the growth of structure data favours a fifth force contribution to the effective gravitational coupling at low redshifts and at more than one sigma at present time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا