ﻻ يوجد ملخص باللغة العربية
We take a new look at the details of symplectic motion in solenoid and bending magnets and rederive known (but not always well-known) facts. We start with a comparison of the general Lagrangian and Hamiltonian formalism of the harmonic oscillator and analyze the relation between the canonical momenta and the velocities (i.e. the first derivatives of the canonical coordinates). We show that the seemingly non-symplectic transfer maps at entrance and exit of solenoid magnets can be re-interpreted as transformations between the canonical and the mechanical momentum, which differ by the vector potential. In a second step we rederive the transfer matrix for charged particle motion in bending magnets from the Lorentz force equation in cartesic coordinates. We rediscover the geometrical and physical meaning of the local curvilinear coordinate system. We show that analog to the case of solenoids - also the transfer matrix of bending magnets can be interpreted as a symplectic product of 3 non-symplectic matrices, where the entrance and exit matrices are transformations between local cartesic and curvilinear coordinate systems. We show that these matrices are required to compare the second moment matrices of distributions obtained by numerical tracking in cartesic coordinates with those that are derived by the transfer a matrix method.
During the 2011 run of the LHC there was a significant measured temperature increase in the LHC Injection Kicker Magnets (MKI) during operation with 50ns bunch spacing. This was due to increased beam-induced heating of the magnet due to beam impedanc
We present a new conceptual and optical design for the Next Linear Collider post-linac collimation system. Energy collimation and passive protection against off-energy beams are achieved in a system with large horizontal dispersion and vertical betat
Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most impor
Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of differ
The Neutrinos at the Main Injector (NuMI) beamline will deliver an intense muon neutrino beam by focusing a beam of mesons into a long evacuated decay volume. The beam must be steered with 1 mRad angular accuracy toward the Soudan Underground Laborat