ﻻ يوجد ملخص باللغة العربية
We present new Gemini spectroscopical data of the Extended Emission-Line Region of 3C~305 radio galaxy in order to achieve the final answer of the long-standing question about the ionizing mechanism. The spectra show strong kinematic disturbances within the most intense line-emitting region. The relative intensities amongst the emission lines agree with the gas being shocked during the interaction of the powerful radio jets with the ambient medium. The emission from the recombination region acts as a very effective cooling mechanism, which is supported by the presence of a neutral outflow. However, the observed intensity is almost an order of magnitude lower than expected in a pure shock model. So auto-ionizing shock models, in low-density and low-abundance regime, are required in order to account for the observed emission within the region. This scenario also supports the hypothesis that the optical emitting gas and the X-ray plasma are in pressure balance.
We present results of HST observations of the radio galaxy 3C 299. The broad-band F702W (R) and F555W (V) images (WFPC2/PC) show an elliptical galaxy, with a comet-like structure extending to the NE in the radio jet direction. The [OIII]$lambda$5007
We present Gemini Multiobject Spectrograph integral field spectroscopy of the extended emission-line region associated with quasar 3C 249.1. The kinematics of the ionized gas measured from the [O III] $lambda$5007 line is rather complex and cannot be
We present extensive ground-based spectroscopy and HST imaging of 3C79, an FR II radio galaxy associated with a luminous extended emission-line region (EELR). Surface brightness modeling of an emission-line-free HST R-band image reveals that the host
We have explored the nature of the extended emission-line region around the z=0.37 quasar 4C 37.43, using extensive ground-based and HST imaging and spectroscopy. The velocity field of the ionized gas shows gradual gradients within components but lar
We present the discovery of diffuse optical line emission in the Centaurus cluster seen with the MUSE IFU. The unparalleled sensitivity of MUSE allows us to detect the faint emission from these structures which extend well beyond the bounds of the pr