ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebraic Meta-Theory of Processes with Data

131   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

There exists a rich literature of rule formats guaranteeing different algebraic properties for formalisms with a Structural Operational Semantics. Moreover, there exist a few approaches for automatically deriving axiomatizations characterizing strong bisimilarity of processes. To our knowledge, this literature has never been extended to the setting with data (e.g. to model storage and memory). We show how the rule formats for algebraic properties can be exploited in a generic manner in the setting with data. Moreover, we introduce a new approach for deriving sound and ground-complete axiom schemata for a notion of bisimilarity with data, called stateless bisimilarity, based on intuitive auxiliary function symbols for handling the store component. We do restrict, however, the axiomatization to the setting where the store component is only given in terms of constants.



قيم البحث

اقرأ أيضاً

Meta SOS is a software framework designed to integrate the results from the meta-theory of structural operational semantics (SOS). These results include deriving semantic properties of language constructs just by syntactically analyzing their rule-ba sed definition, as well as automatically deriving sound and ground-complete axiomatizations for languages, when considering a notion of behavioural equivalence. This paper describes the Meta SOS framework by blending aspects from the meta-theory of SOS, details on their implementation in Maude, and running examples.
96 - Andrej Bauer 2018
This note recapitulates and expands the contents of a tutorial on the mathematical theory of algebraic effects and handlers which I gave at the Dagstuhl seminar 18172 Algebraic effect handlers go mainstream. It is targeted roughly at the level of a d octoral student with some amount of mathematical training, or at anyone already familiar with algebraic effects and handlers as programming concepts who would like to know what they have to do with algebra. We draw an uninterrupted line of thought between algebra and computational effects. We begin on the mathematical side of things, by reviewing the classic notions of universal algebra: signatures, algebraic theories, and their models. We then generalize and adapt the theory so that it applies to computational effects. In the last step we replace traditional mathematical notation with one that is closer to programming languages.
303 - Mario Bravetti 2012
We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities.
129 - Fabrizio Montesi 2018
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types communicating processes with mobile channels, a la pi-calculus. Its construction builds on a recent propositions as types correspondence between session typ es and propositions in linear logic. Desirable properties such as type preservation under reductions and progress come for free from the metatheory of linear logic. We contribute to this research line by extending CP with code mobility. We generalise classical linear logic to capture higher-order (linear) reasoning on proofs, which yields a logical reconstruction of (a variant of) the Higher-Order pi-calculus (HOpi). The resulting calculus is called Classical Higher-Order Processes (CHOP). We explore the metatheory of CHOP, proving that its semantics enjoys type preservation and progress (terms do not get stuck). We also illustrate the expressivity of CHOP through examples, derivable syntax sugar, and an extension to multiparty sessions. Lastly, we define a translation from CHOP to CP, which encodes mobility of process code into reference passing.
We present guarded dependent type theory, gDTT, an extensional dependent type theory with a `later modality and clock quantifiers for programming and proving with guarded recursive and coinductive types. The later modality is used to ensure the produ ctivity of recursive definitions in a modular, type based, way. Clock quantifiers are used for controlled elimination of the later modality and for encoding coinductive types using guarded recursive types. Key to the development of gDTT are novel type and term formers involving what we call `delayed substitutions. These generalise the applicative functor rules for the later modality considered in earlier work, and are crucial for programming and proving with dependent types. We show soundness of the type theory with respect to a denotational model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا