ترغب بنشر مسار تعليمي؟ اضغط هنا

Participation anticipating in elections using data mining methods

145   0   0.0 ( 0 )
 نشر من قبل Seyyed Reza Khaze
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Anticipating the political behavior of people will be considerable help for election candidates to assess the possibility of their success and to be acknowledged about the public motivations to select them. In this paper, we provide a general schematic of the architecture of participation anticipating system in presidential election by using KNN, Classification Tree and Naive Bayes and tools orange based on crisp which had hopeful output. To test and assess the proposed model, we begin to use the case study by selecting 100 qualified persons who attend in 11th presidential election of Islamic republic of Iran and anticipate their participation in Kohkiloye & Boyerahmad. We indicate that KNN can perform anticipation and classification processes with high accuracy in compared with two other algorithms to anticipate participation.



قيم البحث

اقرأ أيضاً

The City of Detroit maintains an active fleet of over 2500 vehicles, spending an annual average of over $5 million on purchases and over $7.7 million on maintenance. Modeling patterns and trends in this data is of particular importance to a variety o f stakeholders, particularly as Detroit emerges from Chapter 9 bankruptcy, but the structure in such data is complex, and the city lacks dedicated resources for in-depth analysis. The City of Detroits Operations and Infrastructure Group and the University of Michigan initiated a collaboration which seeks to address this unmet need by analyzing data from the City of Detroits vehicle fleet. This work presents a case study and provides the first data-driven benchmark, demonstrating a suite of methods to aid in data understanding and prediction for large vehicle maintenance datasets. We present analyses to address three key questions raised by the stakeholders, related to discovering multivariate maintenance patterns over time; predicting maintenance; and predicting vehicle- and fleet-level costs. We present a novel algorithm, PRISM, for automating multivariate sequential data analyses using tensor decomposition. This work is a first of its kind that presents both methodologies and insights to guide future civic data research.
Data-driven decision making is serving and transforming education. We approached the problem of predicting students performance by using multiple data sources which came from online courses, including one we created. Experimental results show prelimi nary conclusions towards which data are to be considered for the task.
Online education platforms enable teachers to share a large number of educational resources such as questions to form exercises and quizzes for students. With large volumes of available questions, it is important to have an automated way to quantify their properties and intelligently select them for students, enabling effective and personalized learning experiences. In this work, we propose a framework for mining insights from educational questions at scale. We utilize the state-of-the-art Bayesian deep learning method, in particular partial variational auto-encoders (p-VAE), to analyze real students answers to a large collection of questions. Based on p-VAE, we propose two novel metrics that quantify question quality and difficulty, respectively, and a personalized strategy to adaptively select questions for students. We apply our proposed framework to a real-world dataset with tens of thousands of questions and tens of millions of answers from an online education platform. Our framework not only demonstrates promising results in terms of statistical metrics but also obtains highly consistent results with domain experts evaluation.
Programming is a valuable skill in the labor market, making the underrepresentation of women in computing an increasingly important issue. Online question and answer platforms serve a dual purpose in this field: they form a body of knowledge useful a s a reference and learning tool, and they provide opportunities for individuals to demonstrate credible, verifiable expertise. Issues, such as male-oriented site design or overrepresentation of men among the sites elite may therefore compound the issue of womens underrepresentation in IT. In this paper we audit the differences in behavior and outcomes between men and women on Stack Overflow, the most popular of these Q&A sites. We observe significant differences in how men and women participate in the platform and how successful they are. For example, the average woman has roughly half of the reputation points, the primary measure of success on the site, of the average man. Using an Oaxaca-Blinder decomposition, an econometric technique commonly applied to analyze differences in wages between groups, we find that most of the gap in success between men and women can be explained by differences in their activity on the site and differences in how these activities are rewarded. Specifically, 1) men give more answers than women and 2) are rewarded more for their answers on average, even when controlling for possible confounders such as tenure or buy-in to the site. Women ask more questions and gain more reward per question. We conclude with a hypothetical redesign of the sites scoring system based on these behavioral differences, cutting the reputation gap in half.
159 - Wies{l}aw Kopec 2017
In this paper we provide a brief summary of development LivingLab PJAIT as an attempt to establish a comprehensive and sustainable ICT-based solution for empowerment of elderly communities towards better urban participation of seniors. We report on o ur various endeavors for better involvement and participation of older adults in urban life by lowering ICT barriers, encouraging social inclusion, intergenerational interaction, physical activity and engaging older adults in the process of development of ICT solutions. We report on a model and assumptions of the LivingLab PJAIT as well as a number of activities created and implemented for LivingLab participants: from ICT courses, both traditional and e-learning, through on-line crowdsourcing tasks, to blended activities of different forms and complexity. We also provide conclusions on the lessons learned in the process and some future plans, including solutions for better senior urban participation and citizen science.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا