ترغب بنشر مسار تعليمي؟ اضغط هنا

Up- and Down-Quark Contributions to the Nucleon Form Factors

140   0   0.0 ( 0 )
 نشر من قبل John Arrington
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent measurements of the neutrons electric to magnetic form factors ratio, R_n= mu_n G_E^n/G_M^n, up to 3.4 (GeV/c)^2 combined with existing R_p= mu_p G_E^p/G_M^p measurements in the same Q^2 range allowed, for the first time, a separation of the up- and down-quark contributions to the form factors at high Q^2, as presented by Cates, et al. Our analysis expands on the original work by including additional form factor data, applying two-photon exchange (TPE) corrections, and accounting for the uncertainties associated with all of the form factor measurements



قيم البحث

اقرأ أيضاً

119 - I. A. Qattan , J. Arrington 2017
The spatial distribution of charge and magnetization within the nucleon (proton and neutron) is encoded in the elastic electromagnetic form factors $G_E^{(p,n)}$ and $G_M^{(p,n)}$. These form factors have been precisely measured utilizing elastic ele ctron scattering, and the combination of proton and neutron form factors allows for the separation of the up- and down-quark contributions to the nucleon form factors. We expand on our original analyses and extract the up- and down-quark contributions to the nucleon electromagnetic form factors from worldwide data with an emphasis on precise new data covering the low-momentum region, which is sensitive to the large-scale structure of the nucleon. From these, we construct the flavor-separated Dirac and Pauli form factors and their ratios, and compare the results to recent extractions and theoretical calculations and models.
We report a calculation of the nucleon axial form factors $G_A^q(Q^2)$ and $G_P^q(Q^2)$ for all three light quark flavors $qin{u,d,s}$ in the range $0leq Q^2lesssim 1.2text{ GeV}^2$ using lattice QCD. This work was done using a single ensemble with p ion mass 317 MeV and made use of the hierarchical probing technique to efficiently evaluate the required disconnected loops. We perform nonperturbative renormalization of the axial current, including a nonperturbative treatment of the mixing between light and strange currents due to the singlet-nonsinglet difference caused by the axial anomaly. The form factor shapes are fit using the model-independent $z$ expansion. From $G_A^q(Q^2)$, we determine the quark contributions to the nucleon spin and axial radii. By extrapolating the isovector $G_P^{u-d}(Q^2)$, we obtain the induced pseudoscalar coupling relevant for ordinary muon capture and the pion-nucleon coupling constant. We find that the disconnected contributions to $G_P$ form factors are large, and give an interpretation based on the dominant influence of the pseudoscalar poles in these form factors.
We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of $Q^2$ = Qsquare (GeV/c)$^2$ and at a for ward electron scattering angle of 30$^circ < theta_e < 40^circ$. The measured asymmetry is $A_{LR}(vec{e}p)$ = (Aphys $pm$ Deltastat$_{stat}$ $pm$ Deltasyst$_{syst}$) $times$ 10$^{-6}$. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A$_0$ = (Azero $pm$ DeltaAzero) $times$ 10$^{-6}$. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher $Q^2$. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be $G_E^s$ + FakGMs $G_M^s$ = GEsGMs $pm $ DeltaGEsGMs at $Q^2$ = Qsquare (GeV/c)$^2$. As in our previous measurement at higher momentum transfer for $G_E^s$ + 0.230 $G_M^s$, we again find the value for $G_E^s$ + FakGMs $G_M^s$ to be positive, this time at an improved significance level of 2 $sigma$.
We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a $Q^2$ of 0.230 (GeV/c)^2 and a scattering angle of theta_e = 30^o - 40^o. Using a large acceptance fast P bF_2 calorimeter with a solid angle of DeltaOmega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is $A_0=(-6.30 +- 0.43) 10^{-6}$. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.
70 - C. Downum 2006
We demonstrate the calculation of the coupling constants and form factors required by effective hadron lagrangians using the quark model. These relations follow from equating expressions for strong transition amplitudes in the two approaches. As exam ples we derive the NNm nucleon-meson coupling constants and form factors for m = pi, eta, eta, sigma, a_0, omega and rho, using harmonic oscillator quark model meson and baryon wavefunctions and the 3P0 decay model; this is a first step towards deriving a quark-based model of the NN force at all separations. This technique should be useful in the application of effective lagrangians to processes in which the lack of data precludes the direct determination of coupling constants and form factors from experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا