ﻻ يوجد ملخص باللغة العربية
In this paper, a framework is presented for node distribution with respect to density, network connectivity and communication time. According to modeled framework we evaluate and compare the performance of three routing protocols; Ad-hoc On-demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Fisheye State Routing (FSR) in MANETs and VANETs using two Mac-layer protocols; 802.11 and 802.11p. We have further modified these protocols by changing their routing information exchange intervals; MOD AODV, MOD DSR and MOD FSR. A comprehensive simulation work is performed in NS-2 for the comparison of these routing protocols for varying mobilities and scalabilities of nodes. To evaluate their efficiency; throughput, End-to-End Delay (E2ED) and Normalized Routing Load (NRL) of these protocols are taken into account as performance parameters. After extensive simulations, we observe that AODV outperforms both with MANETs and VANETs.
Reactive routing protocols are gaining popularity due to their event driven nature day by day. In this vary paper, reactive routing is studied precisely. Route request, route reply and route maintenance phases are modeled with respect to control over
To ensure seamless communication in wireless multi-hop networks, certain classes of routing protocols are defined. This vary paper, is based upon proactive routing protocols for Wireless multihop networks. Initially, we discuss Destination Sequence D
The growing use of aerial user equipments (UEs) in various applications requires ubiquitous and reliable connectivity for safe control and data exchange between these devices and ground stations. Key questions that need to be addressed when planning
Highly dynamic mobile ad-hoc networks (MANETs) are continuing to serve as one of the most challenging environments to develop and deploy robust, efficient, and scalable routing protocols. In this paper, we present DeepCQ+ routing which, in a novel ma
An energy efficient routing protocol is the major attentiveness for researcher in field of Wireless Sensor Networks (WSNs). In this paper, we present some energy efficient hierarchal routing protocols, prosper from conventional Low Energy Adaptive Cl