ﻻ يوجد ملخص باللغة العربية
We report on the impact of variable-scale disorder on 3D Anderson localization of a non-interacting ultracold atomic gas. A spin-polarized gas of fermionic atoms is localized by allowing it to expand in an optical speckle potential. Using a sudden quench of the localized density distribution, we verify that the density profile is representative of the underlying single-particle localized states. The geometric mean of the disordering potential correlation lengths is varied by a factor of four via adjusting the aperture of the speckle focusing lens. We observe that the root-mean-square size of the localized gas increases approximately linearly with the speckle correlation length, in qualitative agreement with the scaling predicted by weak scattering theory.
Anderson localization (AL) is a ubiquitous interference phenomenon in which waves fail to propagate in a disordered medium. We observe three-dimensional AL of noninteracting ultracold matter by allowing a spin-polarized atomic Fermi gas to expand int
The localization of one-electron states in the large (but finite) disorder limit is investigated. The inverse participation number shows a non--monotonic behavior as a function of energy owing to anomalous behavior of few-site localization. The two-s
We show that a one dimensional disordered conductor with correlated disorder has an extended state and a Landauer resistance that is non-zero in the limit of infinite system size in contrast to the predictions of the scaling theory of Anderson locali
We study the Anderson transition for three-dimensional (3D) $N times N times N$ tightly bound cubic lattices where both real and imaginary parts of onsite energies are independent random variables distributed uniformly between $-W/2$ and $W/2$. Such
We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appr