ﻻ يوجد ملخص باللغة العربية
We investigate theoretically the slow non-exponential relaxation dynamics of the electron glass out of equilibrium, where a sudden change in carrier density reveals interesting memory effects. The self-consistent model of the dynamics of the occupation numbers in the system successfully recovers the general behavior found in experiments. Our numerical analysis is consistent with both the expected logarithmic relaxation and our understanding of how increasing disorder or interaction slows down the relaxation process, thus yielding a consistent picture of the electron glass. We also present a novel finite size domino effect where the connection to the leads affects the relaxation process of the electron glass in mesoscopic systems. This effect speeds up the relaxation process, and even reverses the expected effect of interaction; stronger interaction then leading to a faster relaxation.
We report on non equilibrium field effect in insulating amorphous NbSi thin films having different Nb contents and thicknesses. The hallmark of an electron glass, namely the logarithmic growth of a memory dip in conductance versus gate voltage curves
A new protocol for an aging experiment is studied in the electron-glass phase of indium-oxide films. In this protocol, the sample is exposed to a non-ohmic electric field F for a waiting time t_{w} during which the system attempts to reach a steady s
We study the dependence of the glassy properties of strongly localized indium-oxide films on the sample lateral dimensions. Characteristic mesoscopic effects such as reproducible conductance fluctuations (CF) are readily observable in gated structure
Slow relaxation and aging of the conductance are experimental features of a range of materials, which are collectively known as electron glasses. We report dynamic Monte Carlo simulations of the standard electron glass lattice model. In a non-equilib
We introduce an efficient dynamical tree method that enables us, for the first time, to explicitly demonstrate thermo-remanent magnetization memory effect in a hierarchical energy landscape. Our simulation nicely reproduces the nontrivial waiting-tim