ﻻ يوجد ملخص باللغة العربية
A quantum point contact (QPC) is a very basic nano-electronic device: a short and narrow transport channel between two electron reservoirs. In clean channels electron transport is ballistic and the conductance $G$ is then quantised as a function of channel width with plateaus at integer multiples of $2e^2/h$ ($e$ is the electron charge and $h$ Plancks constant). This can be understood in a picture where the electron states are propagating waves, without need to account for electron-electron interactions. Quantised conductance could thus be the signature of ultimate control over nanoscale electron transport. However, even studies with the cleanest QPCs generically show significant anomalies on the quantised conductance traces and there is consensus that these result from electron many-body effects. Despite extensive experimental and theoretical studies understanding of these anomalies is an open problem. We report evidence that the many-body effects have their origin in one or more spontaneously localised states that emerge from Friedel oscillations in the QPC channel. Kondo physics will then also contribute to the formation of the many-body state with Kondo signatures that reflect the parity of the number of localised states. Evidence comes from experiments with length-tunable QPCs that show a periodic modulation of the many-body physics with Kondo signatures of alternating parity. Our results are of importance for assessing the role of QPCs in more complex hybrid devices and proposals for spintronic and quantum information applications. In addition, our results show that tunable QPCs offer a rich platform for investigating many-body effects in nanoscale systems, with the ability to probe such physics at the level of a single site.
Quantum point contacts exhibit mysterious conductance anomalies in addition to well known conductance plateaus at multiples of 2e^2/h. These 0.7 and zero-bias anomalies have been intensively studied, but their microscopic origin in terms of many-body
Point-contact spectroscopy is applied to study the energy dependence of paramagnetic impurities in noble metals. The samples are in the form of the so-called mechanically controllable break-junctions where the investigated piece of alloy makes a nano
The conductance of a quantum point contact (QPC) shows several features that result from many-body electron interactions. The spin degeneracy in zero magnetic field appears to be spontaneously lifted due to the so-called 0.7 anomaly. Further, the g-f
We present measurements of current noise in quantum point contacts as a function of source-drain bias, gate voltage, and in-plane magnetic field. At zero bias, Johnson noise provides a measure of the electron temperature. At finite bias, shot noise a
Spin-density-functional theory of quantum point contacts (QPCs) reveals the formation of a local moment with a net of one electron spin in the vicinity of the point contact - supporting the recent report of a Kondo effect in a QPC. The hybridization