ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of the mass, size, and star formation rate in high-redshift merging galaxies MIRAGE - A new sample of simulations with detailed stellar feedback

78   0   0.0 ( 0 )
 نشر من قبل Valentin Perret
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim at addressing the questions related to galaxy mass assembly through major and minor wet merging processes in the redshift range 1<z<2. A consequent fraction of Milky Way like galaxies are thought to have undergone an unstable clumpy phase at this early stage. Using the adaptive mesh refinement code RAMSES, with a recent physically-motivated implementation of stellar feedback, we build the Merging and Isolated high-Redshift Adaptive mesh refinement Galaxies (MIRAGE) sample. It is composed of 20 mergers and 3 isolated idealized disks simulations with global physical properties in accordance with the 1<z<2 mass complete sample MASSIV. The numerical hydrodynamical resolution reaches 7 parsecs in the smallest Eulerian cells. Our simulations include: star formation, metal line cooling, metallicity advection, and a recent implementation of stellar feedback which encompasses OB-type stars radiative pressure, photo-ionization heating, and supernovae. The initial conditions are set to match the z~2 observations, thanks to a new public code DICE. The numerical resolution allows us to follow the formation and evolution of giant clumps formed in-situ from Jeans instabilities triggered by high initial gas fraction. The star formation history of isolated disks shows stochastic star formation rate, which proceeds from the complex behavior of the giant clumps. Our minor and major gas-rich merger simulations do not trigger starbursts, suggesting a saturation of the star formation in a turbulent and clumpy interstellar medium fed by substantial accretion from the circum-galactic medium. Our simulations are close to the normal regime of the disk-like star formation on a Schmidt-Kennicutt diagram. The mass-size relation and its rate of evolution matches observations, suggesting that the inside-out growth mechanisms of the stellar disk do not necessarily require to be achieved through a cold accretion.



قيم البحث

اقرأ أيضاً

105 - V. Avila-Reese 2011
(Abridged) By means of high-resolution cosmological simulations in the context of the LCDM scenario, the specific star formation rate (SSFR=SFR/Ms, Ms is the stellar mass)--Ms and stellar mass fraction (Fs=Ms/Mh, Mh is the halo mass)--Ms relations of low-mass galaxies (2.5< Mh/10^10 Msun <50 at redshift z=0) at different epochs are predicted. The Hydrodynamics ART code was used and some variations of the sub-grid parameters were explored. Most of simulated galaxies, specially those with the highest resolutions, have significant disk components and their structural and dynamical properties are in reasonable agreement with observations of sub-M* field galaxies. However, the SSFRs are 5-10 times smaller than the averages of several (compiled and homogenized here) observational determinations for field blue/star-forming galaxies at z<0.3 (at low masses, most of observed field galaxies are actually blue/star-forming). This inconsistency seems to remain even at z~1.5 though less drastic. The Fs of simulated galaxies increases with Mh as semi-empirical inferences show, but in absolute values the former are ~5-10 times larger than the latter at z=0; this difference increases probably to larger factors at z~1-1.5. The inconsistencies reported here imply that simulated low-mass galaxies (0.2<Ms/10^9 Msun <30 at z=0) assembled their stellar masses much earlier than observations suggest. This confirms the predictions previously found by means of LCDM-based models of disk galaxy formation and evolution for isolated low-mass galaxies (Firmani & Avila-Reese 2010), and highlight that our implementation of astrophysics into simulations and models are still lacking vital ingredients.
We have used integral field spectroscopy of a sample of six nearby (z~0.01-0.04) high star-formation rate (SFR~10-40 solar masses per year) galaxies to investigate the relationship between local velocity dispersion and star formation rate on sub-gala ctic scales. The low redshift mitigates, to some extent, the effect of beam smearing which artificially inflates the measured dispersion as it combines regions with different line-of-sight velocities into a single spatial pixel. We compare the parametric maps of the velocity dispersion with the Halpha flux (a proxy for local star-formation rate), and the velocity gradient (a proxy for the local effect of beam smearing). We find, even for these very nearby galaxies, the Halpha velocity dispersion correlates more strongly with velocity gradient than with Halpha flux - implying that beam smearing is still having a significant effect on the velocity dispersion measurements. We obtain a first-order non parametric correction for the unweighted and flux weighted mean velocity dispersion by fitting a 2D linear regression model to the spaxel-by-spaxel data where the velocity gradient and the Halpha flux are the independent variables and the velocity dispersion is the dependent variable; and then extrapolating to zero velocity gradient. The corrected velocity dispersions are a factor of ~1.3-4.5 and ~1.3-2.7 lower than the uncorrected flux-weighted and unweighted mean line-of-sight velocity dispersion values, respectively. These corrections are larger than has been previously cited using disc models of the velocity and velocity dispersion field to correct for beam smearing. The corrected flux-weighted velocity dispersion values are sigma_m~20-50 km/s.
359 - P. Santini 2009
We study the star formation and the mass assembly process of 0.3<=z<2.5 galaxies using their IR emission from MIPS 24um band. We used an updated version of the GOODS-MUSIC catalog, extended by the addition of mid-IR fluxes. We compared two different estimators of the Star Formation Rate: the total infrared emission derived from 24um, estimated using both synthetic and empirical IR templates, and the multiwavelength fit to the full galaxy SED. For both estimates, we computed the SFR Density and the Specific SFR. The two SFR tracers are roughly consistent, given the uncertainties involved. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the SFR increases. We show that: a) at z>0.3, the SFR is well correlated with stellar mass, and this relationship seems to steepen with redshift (using IR-based SFRs); b) the contribution to the global SFRD by massive galaxies increases with redshift up to ~2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z~2, massive galaxies are actively star-forming, with a median SFR 300 Msun/yr. During this epoch, they assemble a substantial part of their final stellar mass; e) the SSFR shows a clear bimodal distribution. The analysis of the SFRD and the SSFR seems to support the downsizing scenario, according to which high mass galaxies have formed their stars earlier and faster than their low mass counterparts. A comparison with theoretical models indicates that they follow the global increase in the SSFR with redshift and predict the existence of quiescent galaxies even at z>1.5, but they systematically underpredict the average SSFR.
188 - Daisuke Kawata 2013
To study the star formation and feedback mechanism, we simulate the evolution of an isolated dwarf irregular galaxy (dIrr) in a fixed dark matter halo, similar in size to WLM, using a new stellar feedback scheme. We use the new version of our origina l N-body/smoothed particle chemodynamics code, GCD+, which adopts improved hydrodynamics, metal diffusion between the gas particles and new modelling of star formation and stellar wind and supernovae (SNe) feedback. Comparing the simulations with and without stellar feedback effects, we demonstrate that the collisions of bubbles produced by strong feedback can induce star formation in a more widely spread area. We also demonstrate that the metallicity in star forming regions is kept low due to the mixing of the metal-rich bubbles and the metal-poor inter-stellar medium. Our simulations also suggest that the bubble-induced star formation leads to many counter-rotating stars. The bubble-induced star formation could be a dominant mechanism to maintain star formation in dIrrs, which is different from larger spiral galaxies where the non-axisymmetric structures, such as spiral arms, are a main driver of star formation.
132 - Sarah H. Miller 2013
A number of recent challenges to the standard Lambda-CDM paradigm relate to discrepancies that arise in comparing the abundance and kinematics of local dwarf galaxies with the predictions of numerical simulations. Such arguments rely heavily on the a ssumption that the local dwarf and satellite galaxies form a representative distribution in terms of their stellar-to-halo mass ratios. To address this question, we present new, deep spectroscopy using DEIMOS on Keck for 82 low mass (10^7-10^9 solar masses) star-forming galaxies at intermediate redshift (z=0.2-1). For 50 percent of these we are able to determine resolved rotation curves using nebular emission lines and thereby construct the stellar mass Tully-Fisher relation to masses as low as 10^7 solar masses. Using scaling relations determined from weak lensing data, we convert this to a stellar-to-halo mass (SHM) relation for comparison with abundance matching predictions. We find a discrepancy between the propagated predictions from simulations compared to our observations, and suggest possible reasons for this as well as future tests that will be more effective.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا