ترغب بنشر مسار تعليمي؟ اضغط هنا

NuGrid stellar data set I. Stellar yields from H to Bi for stars with metallicities Z = 0.02 and Z = 0.01

101   0   0.0 ( 0 )
 نشر من قبل Marco Pignatari
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield data base for applications in areas such as pre-solar grain studies. Our non-rotating models assume convective boundary mixing where it has been adopted before. We include 8 (12) initial masses for $Z = 0.01$ ($0.02$). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by a simple analytic core-collapse supernova models with two options for fallback and shock velocities. The explosions show which pre-supernova yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impacts the light elements and the $s$ and $p$ process. For low- and intermediate-mass models our stellar yields from H to Bi include the effect of convective boundary mixing at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the $^{13}$C pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. All our stellar nucleosynthesis profile and time evolution output is available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.



قيم البحث

اقرأ أيضاً

83 - C. Ritter , F. Herwig , S. Jones 2017
We provide here a significant extension of the NuGrid Set 1 models in mass coverage and toward lower metallicity, adopting the same physics assumptions. The combined data set now includes the initial masses M/Msun = 1, 1.65, 2, 3, 4, 5, 6, 7, 12, 15, 20, 25 for Z = 0.02, 0.01, 0.006, 0.001, 0.0001 with alpha-enhanced composition for the lowest three metallicities. These models are computed with the MESA stellar evolution code and are evolved up to the AGB, the white dwarf stage, or until core collapse. The nucleosynthesis was calculated for all isotopes in post-processing with the NuGrid mppnp code. Explosive nucleosynthesis is based on semi-analytic 1D shock models. Metallicity-dependent mass loss, convective boundary mixing in low- and intermediate mass models and H and He core burning massive star models is included. Convective O-C shell mergers in some stellar models lead to the strong production of odd-Z elements P, Cl, K and Sc. In AGB models with hot dredge-up the convective boundary mixing efficiency is reduced to accommodate for its energetic feedback. In both low-mass and massive star models at the lowest metallicity H-ingestion events are observed and lead to i-process nucleosynthesis and substantial N-15 production. Complete yield data tables, derived data products and online analytic data access are provided.
The production of the neutron-capture isotopes beyond iron that we observe today in the solar system is the result of the combined contribution of the r-process, the s- process and possibly the i-process. Low-mass AGB (2 < M/Msun < 3) and massive (M >10 Msun ) stars have been identified as the sites of the s-process. In this work we consider the evolution and nucleosynthesis of low-mass AGB stars. We provide an update of the NuGrid Set models, adopting the same general physics assumptions but using an updated convective-boundary mixing model accounting for the contribution from internal gravity waves. The combined data set includes the initial masses Mzams/Msun = 2, 3 for Z = 0.03, 0.02, 0.01. These models are computed with the MESA stellar code and the evolution is followed up to the end of the AGB phase. The nucleosynthesis was calculated for all isotopes in post-processing with the NuGrid mppnp code. The convective boundary mixing model leads to the formation of a 13C-pocket three times wider compared to the one obtained in the previous set of models, bringing the simulation results now in closer agreement with observations. We also discuss the potential impact of other processes inducing mixing, like rotation, adopting parametric models compatible with theory and observations. Complete yield data tables, derived data products and online analytic data access are provided.
The chemical composition of galaxies has been measured out to z~4. However, nearly all studies beyond z~0.7 are based on strong-line emission from HII regions within star-forming galaxies. Measuring the chemical composition of distant quiescent galax ies is extremely challenging, as the required stellar absorption features are faint and shifted to near-infrared wavelengths. Here, we present ultra-deep rest-frame optical spectra of five massive quiescent galaxies at z~1.4, all of which show numerous stellar absorption lines. We derive the abundance ratios [Mg/Fe] and [Fe/H] for three out of five galaxies; the remaining two galaxies have too young luminosity-weighted ages to yield robust measurements. Similar to lower-redshift findings, [Mg/Fe] appears positively correlated with stellar mass, while [Fe/H] is approximately constant with mass. These results may imply that the stellar mass-metallicity relation was already in place at z~1.4. While the [Mg/Fe]-mass relation at z~1.4 is consistent with the z<0.7 relation, [Fe/H] at z~1.4 is ~0.2 dex lower than at z<0.7. With a [Mg/Fe] of 0.44(+0.08,-0.07) the most massive galaxy may be more alpha-enhanced than similar-mass galaxies at lower redshift, but the offset is less significant than the [Mg/Fe] of 0.6 previously found for a massive galaxy at z=2.1. Nonetheless, these results combined may suggest that [Mg/Fe] in the most massive galaxies decreases over time, possibly by accreting low-mass, less alpha-enhanced galaxies. A larger galaxy sample is needed to confirm this scenario. Finally, the abundance ratios indicate short star-formation timescales of 0.2-1.0 Gyr.
Until a few years ago, the amplitude variation in the photometric data had been limitedly explored mainly because of time resolution and photometric sensitivity limitations. This investigation is now possible thanks to the Kepler and CoRoT databases which provided a unique set of data for studying of the nature of stellar variability cycles. The present study characterizes the amplitude variation in a sample of main--sequence stars with light curves collected using CoRoT exo--field CCDs. We analyze potential stellar activity cycles by studying the variability amplitude over small boxes. The cycle periods and amplitudes were computed based on the Lomb-Scargle periodogram, harmonic fits, and visual inspection. As a first application of our approach we have considered the photometric data for 16 CoRoT FGK main sequence stars, revisited during the IRa01, LRa01 and LRa06 CoRoT runs. The 16 CoRoT stars appear to follow the empirical relations between activity cycle periods ($P_{cyc}$) and the rotation period ($P_{rot}$) found by previous works. In addition to the so-called A (active) and I (inactive) sequences previously identified, there is a possible third sequence, here named S (short-cycles) sequence. However, recovery fractions estimated from simulations suggest that only a half of our sample has confident cycle measurements. Therefore, more study is needed to verify our results and Kepler data shall be notably useful for such a study. Overall, our procedure provides a key tool for exploring the CoRoT and Kepler databases to identify and characterize stellar cycle variability.
Abridged: Observed abundances of extremely metal-poor (EMP) stars in the Halo hold clues for the understanding of the ancient universe. Interpreting these clues requires theoretical stellar models at the low-Z regime. We provide the nucleosynthetic y ields of intermediate-mass Z=$10^{-5}$ stars between 3 and 7.5 $M_{sun}$, and quantify the effects of the uncertain wind rates. We expect these yields can be eventually used to assess the contribution to the chemical inventory of the early universe, and to help interpret abundances of selected C-enhanced EMP stars. By comparing our models and other existing in the literature, we explore evolutionary and nucleosynthetic trends with wind prescriptions and with initial metallicity. We compare our results to observations of CEMP-s stars belonging to the Halo. The yields of intermediate-mass EMP stars reflect the effects of very deep second dredge-up (for the most massive models), superimposed with the combined signatures of hot-bottom burning and third dredge-up. We confirm the reported trend that models with initial metallicity Z$_{ini}$ <= 0.001 give positive yields of $^{12}C, ^{15}N, ^{16}O$, and $^{26}Mg$. The $^{20}Ne, ^{21}Ne$, and $^{24}Mg$ yields, which were reported to be negative at Z$_{ini}$ = 0.0001, become positive for Z=$10^{-5}$. The results using two different prescriptions for mass-loss rates differ widely in terms of the duration of the thermally-pulsing (Super) AGB phase, overall efficiency of the third dredge-up episode, and nucleosynthetic yields. The most efficient of the standard wind rates frequently used in the literature seems to favour agreement between our yield results and observational data. Regardless of the wind prescription, all our models become N-enhanced EMP stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا