ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of the Lorentz and CPT Symmetries at the Planck Energy Scale with X-Ray and Gamma-Ray Observations

181   0   0.0 ( 0 )
 نشر من قبل Henric Krawczynski
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray and gamma-ray observations of astrophysical objects at cosmological distances can be used to probe the energy dependence of the speed of light with high accuracy and to search for violations of Lorentz invariance and CPT symmetry at the Planck energy scale. In this conference contribution, we discuss these searches in the theoretical framework of the Standard-Model Extension. We present new limits on the dispersion relation governed by operators of mass dimension d=5 and d=6, and we discuss avenues for future progress.



قيم البحث

اقرأ أيضاً

154 - Eric S. Perlman 2014
One aspect of the quantum nature of spacetime is its foaminess at very small scales. Many models for spacetime foam are defined by the accumulation power $alpha$, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase shifts they produce) may accumulate over large path-lengths. Here $alpha$ is defined by theexpression for the path-length fluctuations, $delta ell$, of a source at distance $ell$, wherein $delta ell simeq ell^{1 - alpha} ell_P^{alpha}$, with $ell_P$ being the Planck length. We reassess previous proposals to use astronomical observations ofdistant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {em Chandra} to set the constraint $alpha gtrsim 0.58$, which rules out the random walk model (with $alpha = 1/2$). Much firmer constraints canbe set utilizing detections of quasars at GeV energies with {em Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: $alpha gtrsim 0.67$ and $alpha gtrsim 0.72$, respectively. These limits on $alpha$ seem to rule out $alpha = 2/3$, the model of some physical interest.
127 - Shu Zhang , Bo-Qiang Ma 2014
The constancy of light speed is a basic assumption in Einsteins special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space-time in modern physics. However, it is speculated that the speed of light becomes energy-de pendent due to the Lorentz invariance violation~(LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass~8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.
We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands. Our unique data set has allowed us to demonstrate that the selection m ethod strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi-LAT, whereas ~40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-mm spectral slope of blazars is quite flat up to ~70GHz, above which it steepens to <alpha>~-0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency ( upS) in the SED of FSRQs is the same in all the blazar samples with < upS>=10^13.1 Hz, while the mean inverse-Compton peak frequency, < upIC>, ranges from 10^21 to 10^22 Hz. The distributions of upS and of upIC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs and strongly depend on the selection method. The Compton dominance of blazars ranges from ~0.2 to ~100, with only FSRQs reaching values >3. Its distribution is broad and depends strongly on the selection method, with gamma-ray selected blazars peaking at ~7 or more, and radio-selected blazars at values ~1, thus implying that the assumption that the blazar power is dominated by high-energy emission is a selection effect. Simple SSC models cannot explain the SEDs of most of the gamma-ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and upS predicted by the blazar sequence.
Some Quantum Gravity (QG) theories allow for a violation of Lorentz invariance (LIV), manifesting as a dependence of the velocity of light in vacuum on its energy. If such a dependence exists, then photons of different energies emitted together by a distant source will arrive at the Earth at different times. High-energy (GeV) transient emissions from distant astrophysical sources such as Gamma-ray Bursts (GRBs) and Active Galaxy Nuclei can be used to search for and constrain LIV. The Fermi collaboration has previously analyzed two GRBs in order to put constraints on the dispersion parameter in vacuum, and on the energy scale at which QG effects causing LIV may arise. We used three different methods on four bright GRBs observed by the Fermi-LAT to get more stringent and robust constraints. No delays have been detected and strong limits on the QG energy scale are derived: for linear dispersion we set tight constraints placing the QG energy scale above the Planck mass; a quadratic leading LIV effect is also constrained.
162 - Yoshiyuki Inoue 2013
While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick popula tion may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10^{-12} erg/cm^2/s at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا