ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Resolution Spectrum of the Extragalactic Background Light with AKARI InfraRed Camera

149   0   0.0 ( 0 )
 نشر من قبل Kohji Tsumura
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Extragalactic Background Light (EBL) as an integrated light from outside of our Galaxy includes information of the early universe and the Dark Ages. We analyzed the spectral data of the astrophysical diffuse emission obtained with the low-resolution spectroscopy mode on the AKARI Infra-Red Camera (IRC) in 1.8-5.3 um wavelength region. Although the previous EBL observation in this wavelength region is restricted to the observations by DIRBE and IRTS, this study adds a new independent result with negligible contamination of Galactic stars owing to higher sensitivity for point sources. Other two major foreground components, the zodiacal light (ZL) and the diffuse Galactic light (DGL), were subtracted by taking correlations with ZL brightness estimated by the DIRBE ZL model and with the 100 um dust thermal emission, respectively. The isotropic emission was obtained as EBL, which shows significant excess over integrated light of galaxies at <4 um. The obtained EBL is consistent with the previous measurements by IRTS and DIRBE.



قيم البحث

اقرأ أيضاً

We present the near- and mid-infrared zodiacal light spectrum obtained with the AKARI Infra-Red Camera (IRC). A catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. The wavelength range o f this catalog is 1.8-5.3 {mu}m with wavelength resolution of lambda /Delta lambda ~20. Advanced reduction methods specialized for the slit spectroscopy of diffuse sky spectra are developed for constructing the spectral catalog. Based on the comparison analysis of the spectra collected in different seasons and ecliptic latitudes, we confirmed that the spectral shape of the scattered component and the thermal emission component of the zodiacal light in our wavelength range does not show any dependence on location and time, but relative brightness between them varies with location. We also confirmed that the color temperature of the zodiacal emission at 3-5 {mu}m is 300+/-10 K at any ecliptic latitude. This emission is expected to be originated from sub-micron dust particles in the interplanetary space.
We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in 1.8-5.3 um wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3 um PAH band is d etected in the DGL spectrum at Galactic latitude |b| < 15 deg, and its correlations with the Galactic dust and gas are confirmed. The correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust is expressed not by a simple linear correlation but by a relation with extinction. Using this correlation, the spectral shape of DGL at optically thin region (5 deg < |b| < 15 deg) was derived as a template spectrum. Assuming that the spectral shape of this template spectrum is uniform at any position, DGL spectrum can be estimated by scaling this template spectrum using the correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust.
Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history, and may contain faint, extended components missed in galaxy point source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR), or alternately, intra-halo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1.1 and 1.6 micrometers. The observed fluctuations exceed the amplitude from known galaxy populations, are inconsistent with EOR galaxies and black holes, and are largely explained by IHL emission. The measured fluctuations are associated with an EBL intensity that is comparable to the background from known galaxies measured through number counts, and therefore a substantial contribution to the energy contained in photons in the cosmos.
We present extragalactic number counts and a lower limit estimate for the cosmic infrared background at 15 um from AKARI ultra deep mapping of the gravitational lensing cluster Abell 2218. This data is the deepest taken by any facility at this wavele ngth, and uniquely samples the normal galaxy population. We have de-blended our sources, to resolve photometric confusion, and de-lensed our photometry to probe beyond AKARIs blank-field sensitivity. We estimate a de-blended 5 sigma sensitivity of 28.7 uJy. The resulting 15 um galaxy number counts are a factor of three fainter than previous results, extending to a depth of ~ 0.01 mJy and providing a stronger lower limit constraint on the cosmic infrared background at 15 um of 1.9 +/- 0.5 nW m^-2 sr^-1.
The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I co nsists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and has one more planned flight in early 2010. We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times largerthan existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا