ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant soft x-ray emission as a bulk probe of correlated electron behavior in metallic Sr$_x$Ca$_{1-x}$VO$_3$

84   0   0.0 ( 0 )
 نشر من قبل Jude Laverock
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of electron correlation in Sr$_{x}$Ca$_{1-x}$VO$_3$ has been studied using a combination of bulk-sensitive resonant soft x-ray emission spectroscopy (RXES), surface-sensitive photoemission spectroscopy (PES), and ab initio band structure calculations. We show that the effect of electron correlation is enhanced at the surface. Strong incoherent Hubbard subbands are found to lie ~ 20% closer in energy to the coherent quasiparticle features in surface-sensitive PES measurements compared with those from bulk-sensitive RXES, and a ~ 10% narrowing of the overall bandwidth at the surface is also observed.



قيم البحث

اقرأ أيضاً

To clarify how the electronic state of Sr1-xLaxRuO3 evolves with La doping, we conducted photoemission (PES) experiments using soft x-rays. The spectral shape of the Ru 4d derived peak near the Fermi level changes significantly with increasing x. Thi s variation indicates that a spectral weight transfer from the coherent to incoherent component occurs due to an enhancement of the electron correlation effect. Resonant PES experiments at the La 3d_{5/2} edge have confirmed that there is no significant contribution of the La 5d state in the energy range where the spectral weight transfer is observed. Using the dependence of the photoelectron mean free path on the photon energy, we subtracted the surface components from the PES spectra and confirmed that the enhancement of the electron correlation effect with La doping is an intrinsic bulk phenomenon. On the other hand, a large portion of the coherent component remains at the Fermi level up to x = 0.5, reflecting that the Ru 4d state still has itinerant characteristics. Moreover, we found that the PES spectra hardly depend on the temperature and do not exhibit a discernible change with magnetic ordering, suggesting that the temperature variation of the exchange splitting does not follow the prediction of the Stoner theory. The presently obtained experimental results indicate that the electron correlation effect plays an important role in Sr1-xLaxRuO3 and that the Ru 4d electrons possess both local and itinerant characteristics.
We describe a strategy for using resonant soft x-ray scattering (RSXS) to study the electronic structure of transition metal oxide quantum wires. Using electron beam lithography and ion milling, we have produced periodic, patterned arrays of colossal magnetoresistance (CMR) phase La(1-x)Sr(x)MnO(3) consisting of ~ 5000 wires, each of which is 80 nm in width. The scattered intensity exhibits a series of peaks that can be interpreted as Bragg reflections from the periodic structure or, equivalently, diffraction orders from the grating-like structure. RSXS measurements at the Mn L(2,3) edge, which has a large magnetic cross section, show clear evidence for a magnetic superstructure with a commensurate period of five wires, which we interpret as commensurately modulated antiferromagnetism. This superstructure, which is accompanied by non-trivial reorganization of the magnetization within each wire, likely results from classical dipole interactions among the wires. We introduce a simple, exactly soluble, analytic model of the scattering that captures, semi-quantitatively, the primary features in the RSXS data; this model will act as a foundation for forthcoming, detailed studies of the magnetic structure in these systems.
108 - M. Kriener , C. Zobel , A. Reichl 2004
We present an investigation of the influence of structural distortions in charge-carrier doped lmco by substituting La$^{3+}$ with alkaline earth metals of strongly different ionic sizes, that is M = Ca$^{2+}$, Sr$^{2+}$, and Ba$^{2+}$, respectively. We find that both, the magnetic properties and the resistivity change non-monotonously as a function of the ionic size of M. Doping lmco with M = Sr$^{2+}$ yields higher transition temperatures to the ferromagnetically ordered states and lower resistivities than doping with either Ca$^{2+}$ or Ba$^{2+}$ having a smaller or larger ionic size than Sr$^{2+}$, respectively. From this observation we conclude that the different transition temperatures and resistivities of lmco for different M (of the same concentration $x$) do not only depend on the varying chemical pressures. The local disorder due to the different ionic sizes of La$^{3+}$ and M$^{2+}$ play an important role, too.
In order to study the phase diagram from a microscopic viewpoint, we have measured wTF- and ZF-$mu^+$SR spectra for the Sr$_{1-x}$Ca$_x$Co$_2$P$_2$ powder samples with $x=0$, 0.2, 0.4, 0.5, 0.6, 0.8, and 1. Due to a characteristic time window and spa tial resolution of $mu^+$SR, the obtained phase diagram was found to be rather different from that determined by magnetization measurements. That is, as $x$ increases from 0, a Pauli-paramagnetic phase is observed even at the lowest $T$ measured (1.8~K) until $x=0.4$, then, a spin-glass like phase appears at $0.5leq xleq0.6$, and then, a phase with wide field distribution probably due to incommensurate AF order is detected for $x=0.8$, and finally, a commensurate $A$-type AF ordered phase (for $x=1$) is stabilized below $T_{rm N}sim80~$K. Such change is most likely reasonable and connected to the shrink of the $c$-axis length with $x$, which naturally enhances the magnetic interaction between the two adjacent Co planes.
Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا