ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward a Deterministic Model of Planetary Formation VII: Eccentricity Distribution of Gas Giants

367   0   0.0 ( 0 )
 نشر من قبل Shigeru Ida
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ubiquity of planets and diversity of planetary systems reveal planet formation encompass many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches leads to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interaction between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (> 30AU) gas giants with nearly circular orbits.



قيم البحث

اقرأ أيضاً

128 - Shigeru Ida , D. N. C. Lin 2007
In a further development of a deterministic planet-formation model (Ida & Lin 2004), we consider the effect of type-I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early embedded phase of prot ostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type-I migration leads to their efficient self-clearing. But, embryos continue to form from residual planetesimals at increasingly large radii, repeatedly migrate inward, and provide a main channel of heavy element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model and type-I migration is no longer an effective disruption mechanism for mars-mass embryos. Over wide ranges of initial disk surface densities and type-I migration efficiency, the surviving population of embryos interior to the ice line has a total mass several times that of the Earth. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. But, the onset of efficient gas accretion requires the emergence and retention of cores, more massive than a few M_earth, prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type-I migration. We suggest that the observed fraction of solar-type stars with gas giant planets can be reproduced only if the actual type-I migration time scale is an order of magnitude longer than that deduced from linear theories.
191 - Shigeru Ida , D. N. C. Lin 2008
We address two outstanding issues in the sequential accretion scenario for gas giant planet formation, the retention of dust grains in the presence of gas drag and that of cores despite type I migration. The efficiency of these processes is determine d by the disk structure. Theoretical models suggest that planets form in protostellar disk regions with an inactive neutral ``dead zone near the mid plane, sandwiched together by partially ionized surface layers where magnetorotational instability is active. Due to a transition in the abundance of dust grains, the active layers thickness decreases abruptly near the ice line. Over a range of modest accretion rates ($sim 10^{-9}-10^{-8} M_odot$ yr$^{-1}$), the change in the angular momentum transfer rate leads to local surface density and pressure distribution maxima near the ice line. The azimuthal velocity becomes super-Keplerian and the grains accumulate in this transition zone. This barrier locally retains protoplanetary cores and enhances the heavy element surface density to the critical value needed to initiate efficient gas accretion. It leads to a preferred location and epoch of gas giant formation. We simulate and reproduce the observed frequency and mass-period distribution of gas giants around solar type stars without having to greatly reduce the type I migration strength. The mass function of the short-period planets can be utilized to calibrate the efficiency of type I migration and to extrapolate the fraction of stars with habitable terrestrial planets.
Accordling to the theory of Kozai resonance, the initial mutual inclination between a small body and a massive planet in an outer circular orbit is as high as $sim39.2^{circ}$ for pumping the eccentricity of the inner small body. Here we show that, w ith the presence of a residual gas disk outside two planetary orbits, the inclination can be reduced as low as a few degrees. The presence of disk changes the nodal precession rates and directions of the planet orbits. At the place where the two planets achieve the same nodal processing rate, vertical secular resonance would occur so that mutual inclination of the two planets will be excited, which might trigger the Kozai resonance between the two planets further. However, in order to pump an inner Jupiter-like planet, the conditions required for the disk and the outer planet are relatively strict. We develop a set of evolution equations, which can fit the N-body simulation quite well but be integrated within a much shorter time. By scanning the parameter spaces using the evolution equations, we find that, a massive planet ($10M_J$) at 30AU with $6^o$ inclined to a massive disk ($50M_J$) can finally enter the Kozai resonance with an inner Jupiter around the snowline. And a $20^{circ}$ inclination of the outer planet is required for flipping the inner one to a retrograde orbit. In multiple planet systems, the mechanism can happen between two nonadjacent planets, or inspire a chain reaction among more than two planets. This mechanism could be the source of the observed giant planets in moderate eccentric and inclined orbits, or hot-Jupiters in close-in, retrograde orbits after tidal damping.
The recent discoveries of massive planets on ultra-wide orbits of HR 8799 (Marois et al. 2008) and Fomalhaut (Kalas et al. 2008) present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation m echanisms--core accretion (with or without migration), scattering from the inner disk, or gravitational instability--could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes greater than 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for planet dimming with time. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass in their disks.
186 - Yuhiko Aoyama , Masahiro Ikoma , 2018
Progress in understanding of giant planet formation has been hampered by a lack of observational constraints to growing protoplanets. Recently, detection of an H{alpha}-emission excess via direct imaging was reported for the protoplanet LkCa15b orbit ing the pre-main-sequence star LkCa15. However, the physical mechanism for the H{alpha} emission is poorly understood. According to recent high-resolution three-dimensional hydrodynamic simulations of the flow accreting onto protoplanets, the disk gas flows down almost vertically onto and collides with the surface of a circum-planetary disk at a super-sonic velocity and thus passes through a strong shockwave. The shock-heated gas is hot enough to generate H{alpha} emission. Here we develop a one-dimensional radiative hydrodynamic model of the flow after the shock by detailed calculations of chemical reactions and electron transitions in hydrogen atoms, and quantify the hydrogen line emission in the Lyman-, Balmer-, and Paschen-series from the accreting gas giant system. We then demonstrate that the H{alpha} intensity is strong enough to be detected with current observational technique. Comparing our theoretical H{alpha} intensity with the observed one from LkCa15b, we constrain the protoplanet mass and the disk gas density. Observation of hydrogen line emission from protoplanets is highly encouraged to obtain direct constraints of accreting gas giants, which will be key in understanding the formation of gas giants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا