ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradings of positive rank on simple Lie algebras

196   0   0.0 ( 0 )
 نشر من قبل Paul Levy
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We complete the classification of positive rank gradings on Lie algebras of simple algebraic groups over an algebraically closed field k whose characteristic is zero or not too small, and we determine the little Weyl groups in each case. We also classify the stable gradings and prove Popovs conjecture on the existence of a Kostant section.



قيم البحث

اقرأ أيضاً

126 - Kari Vilonen , Ting Xue 2020
In this paper we construct full support character sheaves for stably graded Lie algebras. Conjecturally these are precisely the cuspidal character sheaves. Irreducible representations of Hecke algebras associated to complex reflection groups at roots of unity enter the description. We do so by analysing the Fourier transform of the nearby cycle sheaves constructed in [GVX2].
In this paper we consider gradings by a finite abelian group $G$ on the Lie algebra $mathfrak{sl}_n(F)$ over an algebraically closed field $F$ of characteristic different from 2 and not dividing $n$.
We classify, up to isomorphism, all gradings by an arbitrary abelian group on simple finitary Lie algebras of linear transformations (special linear, orthogonal and symplectic) on infinite-dimensional vector spaces over an algebraically closed field of characteristic different from 2.
94 - A.G. Elashvili , V.G. Kac 2003
We study and give a complete classification of good $ZZ$-gradings of all simple finite-dimensional Lie algebras. This problem arose in the quantum Hamiltonian reduction for affine Lie algebras.
For any abelian group $G$, we classify up to isomorphism all $G$-gradings on the classical central simple Lie algebras, except those of type $D_4$, over the field of real numbers (or any real closed field).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا