ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of proton-rich 66^Se up to J^{pi} = 6^+: isospin-breaking effect in the A = 66 isobaric triplet

89   0   0.0 ( 0 )
 نشر من قبل Panu Ruotsalainen Mr.
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Candidates for three excited states in the 66^Se have been identified using the recoil-{beta} tagging method together with a veto detector for charged-particle evaporation channels. These results allow a comparison of mirror and triplet energy differences between analogue states across the A = 66 triplet as a function of angular momentum. The extracted triplet energy differences follow the negative trend observed in the f_7/2 shell. Shell-model calculations indicate a continued need for an additional isospin non-conserving interaction in addition to the Coulomb isotensor part as a function of mass.



قيم البحث

اقرأ أيضاً

Background: Shell evolution can impact the structure of the nuclei and lead to effects such as shape coexistence. The nuclei around $^{68}$Ni represent an excellent study case, however, spectroscopic information of the neutron-rich, $Z<28$ nuclei is limited. Purpose: The goal is to measure $gamma$-ray transitions in $^{66}$Fe, $^{66}$Co and $^{66}$Ni populated in the $beta^-$ decay of $^{66}$Mn, to determine absolute $beta$-feedings and relative $gamma$-decay probabilities and to compare the results with Monte Carlo Shell Model calculations in order to study the influence of the relevant single neutron and proton orbitals occupancies around $Z=28$ and $N=40$. Method: The low-energy structures of $^{65,66}$Fe, $^{66}$Co and $^{66}$Ni were studied in the $beta^-$ decay of $^{66}$Mn produced at ISOLDE, CERN. The beam was purified by means of laser resonance ionization and mass separation. The $beta$ and $gamma$ events detected by three plastic scintillators and two MiniBall cluster germanium detectors, respectively, were correlated in time to build the low-energy excitation schemes and to determine the $beta$-decay half-lives of the nuclei. Results: The relative small $beta$-decay ground state feeding of $^{66}$Fe obtained in this work is at variant to the earlier studies. Spin and parity $1^+$ was assigned to the $^{66}$Co ground state based on the strong ground state feeding in the decay of $^{66}$Fe as well as in the decay of $^{66}$Co. Experimental log(ft) values, $gamma$-ray deexcitation patterns and energies of excited states were compared to Monte Carlo Shell Model calculations. Based on this comparison, spin and parity assignments for the selected number of low-lying states in the $^{66}$Mn to $^{66}$Ni chain were proposed. Conclusions: The $beta$-decay chain starting $^{66}$Mn towards $^{66}$Ni, crossing $N=40$, evolves from deformed nuclei to sphericity...
Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, So uth Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.
New experimental data obtained from $gamma$-ray tagged one-neutron and one-proton knockout from $^{55}$Co is presented. A candidate for the sought-after $T=1, T_z = 0, J^{pi} = 6^+$ state in $^{54}$Co is proposed based on a comparison to the new data on $^{54}$Fe, the corresponding observables predicted by large-scale-shell-model (LSSM) calculations in the full $fp$-model space employing charge-dependent contributions, and isospin-symmetry arguments. Furthermore, possible isospin-symmetry breaking in the $A=54$, $T=1$ triplet is studied by calculating the experimental $c$ coefficients of the isobaric mass multiplet equation (IMME) up to the maximum possible spin $J=6$ expected for the $(1f_{7/2})^{-2}$ two-hole configuration relative to the doubly-magic nucleus $^{56}$Ni. The experimental quantities are compared to the theoretically predicted $c$ coefficients from LSSM calculations using two-body matrix elements obtained from a realistic chiral effective field theory potential at next-to-next-to-next-to-leading order (N$^3$LO).
A precision measurement of the gamma yields following the beta decay of 32Cl has determined its isobaric analogue branch to be (22.47^{+0.21}_{-0.19})%. Since it is an almost pure Fermi decay, we can also determine the amount of isospin-symmetry brea king in this superallowed transition. We find a very large value, delta_C=5.3(9)%, in agreement with a shell-model calculation. This result sets a benchmark for isospin-symmetry-breaking calculations and lends support for similarly-calculated, yet smaller, corrections that are currently applied to 0+ -> 0+ transitions for tests of the Standard Model.
61 - R. Honda , M. Agnello , J. K. Ahn 2017
We searched for the bound state of the neutron-rich $Lambda$-hypernucleus ${}^{6}_{Lambda}$H, using the ${}^{6}$Li($pi^{-}, K^{+}$)X double charge-exchange reaction at a $pi^{-}$ beam momentum of 1.2 GeV/c at J-PARC. A total of $1.4 times 10^{12}$ $p i^{-}$ was driven onto a ${}^{6}$Li target of 3.5-g/$rm cm^2$ thickness. No event was observed below the bound threshold, i.e., the mass of ${}^{4}_{Lambda}$H + 2n, in the missing-mass spectrum of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction in the $2^{circ}$ < $theta_{pi K}$ < $20^{circ}$ angular range. Furthermore, no event was found up to 2.8 MeV/$c^2$ above the bound threshold. We obtained the the double-differential cross section spectra of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction in the angular range of $2^{circ}$ < $theta_{pi K}$ < $14^{circ}$. An upper limit of 0.56 nb/sr (90% C.L.) was obtained for the production cross section of the ${}^{6}_{Lambda}$H hypernucleus bound state. In addition, not only the bound state region, but also the $Lambda$ continuum region and part of the $Sigma^{-}$ quasi-free production region of the ${}^{6}$Li($pi^{-}, K^{+}$)X reaction, were obtained with high statistics. The present missing-mass spectrum will facilitate the investigation of the $Sigma^{-}$-nucleus optical potential for $Sigma^{-}$-${}^{5}$He through spectrum shape analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا