ﻻ يوجد ملخص باللغة العربية
Contrary to previous studies that identified the ground state crystal structure of the entire R_3Co series (R is a rare earth) as orthorhombic Pnma, we show that Y_3Co undergoes a structural phase transition at T_t=160K. Single crystal neutron diffraction data reveal that at T_t the trigonal prisms formed by a cobalt atom and its six nearest-neighbor yttrium atoms experience distortions accompanied by notable changes of the Y-Co distances. The formation of the low-temperature phase is accompanied by a pronounced lattice distortion and anomalies seen in heat capacity and resistivity measurements. Density functional theory calculations reveal a dynamical instability of the Pnma structure of Y_3Co. In particular, a transversal acoustic phonon mode along the (00z) direction has imaginary frequencies at z<1/4. Employing inelastic neutron scattering measurements we find a strong damping of the (00z) phonon mode below a critical temperature T_t. The observed structural transformation causes the reduction of dimensionality of electronic bands and decreases the electronic density of states at the Fermi level that identifies Y_3Co as a system with the charge density wave instability.
The pressure-induced structural phase transition in the intermediate-valence compound CeNi has been investigated by X-ray and neutron powder diffraction techniques. For the first time it is shown that the structure of the pressure-induced CeNi phase
Lattice dynamical methods used to predict phase transformations in crystals typically deal with harmonic phonon spectra and are therefore not applicable in important situations where one of the competing crystal structures is unstable in the harmonic
Chemisorbed molecules at a fuel cell electrode are a very sensitive probe of the surrounding electrochemical environment, and one that can be accurately monitored with different spectroscopic techniques. We develop a comprehensive electrochemical mod
We report first principles density functional perturbation theory calculations and inelastic neutron scattering measurements of the phonon density of states, dispersion relations and electromechanical response of PbTiO3, BaTiO3 and SrTiO3. The phonon
Multiferroics are materials where two or more ferroic orders coexist owing to the interplay between spin, charge, lattice and orbital degrees of freedom. The explosive expansion of multiferroics literature in recent years demon-strates the fast growi