BaV3O8: A possible Majumdar-Ghosh system with S=1/2


الملخص بالإنكليزية

BaV3O8 contains both magnetic V4+(S=1/2) ions and non-magnetic V5+(S=0) ions. The V4+ ions are arranged in a coupled Majumdar-Ghosh chain like network. Our magnetic susceptibility chi(T) data fit well with the Curie-Weiss formula in the temperature range of 80-300K and it yields a Curie constant C=0.39cm3K/mole-V4+ and an antiferromagnetic Weiss temperature theta=-26K. The chi(T) curve shows a broad maximum at T~25K indicative of short-range order (SRO) and an anomaly corresponding to long-range order (LRO) at TN~6K. The value of the frustration index (f=mod[theta/TN]~5) suggests that the system is moderately frustrated. Above the LRO temperature the experimental magnetic susceptibility data match well with the coupled Majumdar-Ghosh chain model with the ratio of the nnn (next-nearest neighbor) to nn (nearest neighbor) magnetic coupling alpha=2 and Jnnn/kB=40K. In a mean-field approach when considering the inter-chain interactions, we obtain the total inter-chain coupling to be about 16K. The LRO anomaly at TN is also observe in the specific heat Cp(T) data and is not sensitive to an applied magnetic field up to 90kOe. A 51V NMR signal corresponding to the non-magnetic vanadium was observed. Anomalies at 6K were observed in the variation with temperature of the 51V NMR linewidth and in the spin-lattice relaxation rate 1/T1, indicating that they are sensitive to the LRO onset and fluctuations at the magnetic V sites. The existence of two components (one short and another long) is observed in the spin-spin relaxation rate 1/T2 data in the vicinity of TN. The shorter component seems to be intimately connected with the magnetically ordered state. We suggest that both magnetically ordered and non-long range ordered (non-LRO) regions coexist in this compound below the long range ordering temperature.

تحميل البحث