ﻻ يوجد ملخص باللغة العربية
The cranked relativistic Hartree-Bogoliubov (CRHB) theory has been applied for a systematic study of pairing and rotational properties of actinides and light superheavy nuclei. Pairing correlations are taken into account by the Brink-Booker part of finite range Gogny D1S force. For the first time in the covariant density functional theory (CDFT) framework the pairing properties are studied via the quantities (such as three-point $Delta^{(3)}$ indicators) related to odd-even mass staggerings. The investigation of the moments of inertia at low spin and the $Delta^{(3)}$ indicators shows the need for an attenuation of the strength of the Brink-Booker part of the Gogny D1S force in pairing channel. The investigation of rotational properties of even-even and odd-mass nuclei at normal deformation, performed in the density functional theory framework in such a systematic way for the first time, reveals that in the majority of the cases the experimental data are well described. These include the evolution of the moments of inertia with spin, band crossings in the $Ageq 242$ nuclei, the impact of the particle in specific orbital on the moments of inertia in odd-mass nuclei. The analysis of the discrepancies between theory and experiment in the band crossing region of $Aleq 240$ nuclei suggests the stabilization of octupole deformation at high spin, not included in the present calculations. The evolution of pairing with deformation, which is important for the fission barriers, has been investigated via the analysis of the moments of inertia in the superdeformed minimum. The dependence of the results on the CDFT parametrization has been studied by comparing the results of the calculations obtained with the NL1 and NL3* parametrizations.
The impact of pairing correlations on the fission barriers is investigated in Relativistic Hartree Bogoliubov (RHB) theory and Relativistic Mean Field (RMF)+BCS calculations. It is concluded that the constant gap approximation in the usual RMF+BCS ca
The systematic investigation of the ground state and fission properties of even-even actinides and superheavy nuclei with $Z=90-120$ from the two-proton up to two-neutron drip lines with proper assessment of systematic theoretical uncertainties has b
A systematic global investigation of pairing properties based on all available experimental data on pairing indicators has been performed for the first time in the framework of covariant density functional theory. It is based on separable pairing int
The neutron and proton drip lines represent the limits of the nuclear landscape. While the proton drip line is measured experimentally up to rather high $Z$-values, the location of the neutron drip line for absolute majority of elements is based on t
Modern applications of Covariant Density Functional Theory (CDFT) are discussed. First we show a systematic investigation of fission barriers in actinide nuclei within constraint relativistic mean field theory allowing for triaxial deformations. In t