ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete spectrum and scalar products for the open spin-1/2 XXZ quantum chains with non-diagonal boundary terms

152   0   0.0 ( 0 )
 نشر من قبل Giuliano Niccoli G.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the quantum separation of variable (SOV) method to construct the eigenstates of the open XXZ chain with the most general boundary terms. The eigenstates in the inhomogeneous case are constructed in terms of solutions of a system of quadratic equations. This SOV representation permits us to compute scalar products and can be used to calculate form factors and correlation functions.



قيم البحث

اقرأ أيضاً

Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, the Bethe-type eigenstates of the XXZ spin-1/2 chain with arbitrary boundary fields are constructed. It is found that by employing two sets of gauge transformation s, proper generators and reference state for constructing Bethe vectors can be obtained respectively. Given an inhomogeneous T-Q relation for an eigenvalue, it is proven that the resulting Bethe state is an eigenstate of the transfer matrix, provided that the parameters of the generators satisfy the associated Bethe Ansatz equations.
The Izergin-Korepin model with general non-diagonal boundary terms, a typical integrable model beyond A-type and without U(1)-symmetry, is studied via the off-diagonal Bethe ansatz method. Based on some intrinsic properties of the R-matrix and the K- matrices, certain operator product identities of the transfer matrix are obtained at some special points of the spectral parameter. These identities and the asymptotic behaviors of the transfer matrix together allow us to construct the inhomogeneous T-Q relation and the associated Bethe ansatz equations. In the diagonal boundary limit, the reduced results coincide exactly with those obtained via other methods.
161 - G. Niccoli 2021
In this first paper, we start the analysis of correlation functions of quantum spin chains with general integrable boundary conditions. We initiate these computations for the open XXX spin 1/2 quantum chains with some unparallel magnetic fields allow ing for a spectrum characterization in terms of homogeneous Baxter like TQ-equations, in the framework of the quantum separation of variables (SoV). Previous SoV analysis leads to the formula for the scalar products of the so-called separate states. Here, we solve the remaining fundamental steps allowing for the computation of correlation functions. In particular, we rederive the ground state density in the thermodynamic limit thanks to SoV approach, we compute the so-called boundary-bulk decomposition of boundary separate states and the action of local operators on these separate states in the case of unparallel boundary magnetic fields. These findings allow us to derive multiple integral formulae for these correlation functions similar to those previously known for the open XXX quantum spin chain with parallel magnetic fields.
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities amon g the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the $SU_q(n)$ algebra.
105 - Xiong Le , Yi Qiao , Junpeng Cao 2021
Finding out root patterns of quantum integrable models is an important step to study their physical properties in the thermodynamic limit. Especially for models without $U(1)$ symmetry, their spectra are usually given by inhomogeneous $T-Q$ relations and the Bethe root patterns are still unclear. In this paper with the antiperiodic $XXZ$ spin chain as an example, an analytic method to derive both the Bethe root patterns and the transfer-matrix root patterns in the thermodynamic limit is proposed. Based on them the ground state energy and elementary excitations in the gapped regime are derived. The present method provides an universal procedure to compute physical properties of quantum integrable models in the thermodynamic limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا