ﻻ يوجد ملخص باللغة العربية
Cross-situational word learning is based on the notion that a learner can determine the referent of a word by finding something in common across many observed uses of that word. Here we propose an adaptive learning algorithm that contains a parameter that controls the strength of the reinforcement applied to associations between concurrent words and referents, and a parameter that regulates inference, which includes built-in biases, such as mutual exclusivity, and information of past learning events. By adjusting these parameters so that the model predictions agree with data from representative experiments on cross-situational word learning, we were able to explain the learning strategies adopted by the participants of those experiments in terms of a trade-off between reinforcement and inference. These strategies can vary wildly depending on the conditions of the experiments. For instance, for fast mapping experiments (i.e., the correct referent could, in principle, be inferred in a single observation) inference is prevalent, whereas for segregated contextual diversity experiments (i.e., the referents are separated in groups and are exhibited with members of their groups only) reinforcement is predominant. Other experiments are explained with more balanced doses of reinforcement and inference.
An explanation for the acquisition of word-object mappings is the associative learning in a cross-situational scenario. Here we present analytical results of the performance of a simple associative learning algorithm for acquiring a one-to-one mappin
The Bayesian view of the brain hypothesizes that the brain constructs a generative model of the world, and uses it to make inferences via Bayes rule. Although many types of approximate inference schemes have been proposed for hierarchical Bayesian mo
Neural responses in the cortex change over time both systematically, due to ongoing plasticity and learning, and seemingly randomly, due to various sources of noise and variability. Most previous work considered each of these processes, learning and
Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolv
The central tenet of reinforcement learning (RL) is that agents seek to maximize the sum of cumulative rewards. In contrast, active inference, an emerging framework within cognitive and computational neuroscience, proposes that agents act to maximize