ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations

137   0   0.0 ( 0 )
 نشر من قبل Guang-Yu Guo
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The plasmonic properties of sphere-like bcc Na nanoclusters ranging from Na$_{15}$ to Na$_{331}$ have been studied by real-time time-dependent local density approximation calculations. The optical absorption spectrum, density response function and static polarizability are evaluated. It is shown that the effect of the ionic background (ionic species and lattice) of the clusters accounts for the remaining discrepancy in the principal (surface plasmon) absorption peak energy between the experiments and previous calculations based on a jellium background model. The ionic background effect also pushes the critical cluster size where the maximum width of the principal peak occurs from Na$_{40}$ predicted by the previous jellium model calculations to Na$_{65}$. In the volume mode clusters (Na$_{27}$, Na$_{51}$, Na$_{65}$, Na$_{89}$ and Na$_{113}$) in which the density response function is dominated by an intense volume mode, a multiple absorption peak structure also appears next to the principal peak. In contrast, the surface mode clusters of greater size (Na$_{169}$, Na$_{229}$, Na$_{283}$ and Na$_{331}$) exhibit a smoother and narrower principal absorption peak because their surface plasmon energy is located well within that of the unperturbed electron-hole transitions, and their density responses already bear resemblance to that of classical Mie theory. Moreover, it is found that the volume plasmon that exist only in finite size particles, gives rise to the long absorption tail in the UV region. This volume plasmon manifests itself in the absorption spectrum even for clusters as large as Na$_{331}$ with an effective diameter of $sim$3.0 nm.



قيم البحث

اقرأ أيضاً

We present a systematic study of the photo-absorption spectra of various Si$_{n}$H$_{m}$ clusters (n=1-10, m=1-14) using the time-dependent density functional theory (TDDFT). The method uses a real-time, real-space implementation of TDDFT involving f ull propagation of the time dependent Kohn-Sham equations. Our results for SiH$_{4}$ and Si$_{2}$H$_{6}$ show good agreement with the earlier calculations and experimental data. We find that for small clusters (n<7) the photo-absorption spectrum is atomic-like while for the larger clusters it shows bulk-like behaviour. We study the photo-absorption spectra of silicon clusters as a function of hydrogenation. For single hydrogenation, we find that in general, the absorption optical gap decreases and as the number of silicon atoms increase the effect of a single hydrogen atom on the optical gap diminishes. For further hydrogenation the optical gap increases and for the fully hydrogenated clusters the optical gap is larger compared to corresponding pure silicon clusters.
103 - Vladimir U. Nazarov 2018
We evaluate the density matrix of an arbitrary quantum mechanical system in terms of the quantities pertinent to the solution of the time-dependent density functional theory (TDDFT) problem. Our theory utilizes the adiabatic connection perturbation m ethod of G{o}rling and Levy, from which the expansion of the many-body density matrix in powers of the coupling constant $lambda$ naturally arises. We then find the reduced density matrix $rho_lambda({bf r},{bf r},t)$, which, by construction, has the $lambda$-independent diagonal elements $rho_lambda({bf r},{bf r},t)=n({bf r},t)$, $n({bf r},t)$ being the particle density. The off-diagonal elements of $rho_lambda({bf r},{bf r},t)$ contribute importantly to the processes, which cannot be treated via the density, directly or by the use of the known TDDFT functionals. Of those, we consider the momentum-resolved photoemission, doing this to the first order in $lambda$, i.e., on the level of the exact exchange theory. In illustrative calculations of photoemission from the quasi-2D electron gas and isolated atoms, we find quantitatively strong and conceptually far-reaching differences with the independent-particle Fermis golden rule formula.
Morphology and its stability are essential features to address physicochemical properties of metallic nanoparticles. By means of Molecular Dynamics based simulations we show a complex dependence on the size and material of common structural mechanism s taking place in mono-metallic nanoparticles at icosahedral magic sizes. We show that the well known Lipscomb s Diamond Square Diamond mechanisms, single step screw dislocation motions of the whole cluster, take place only below a given size which is material dependent. Above that size, layer by layer dislocations and/or surface peeling are likely to happen, leading to low symmetry defected motifs. The material dependence of this critical size is similar to the crossover sizes among structural motifs, based on the ration between the bulk modulus and atomic cohesive energy.
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent ional ground state DFT simulation, hence is limited to small systems. In this paper, we accelerate hybrid functional rt-TDDFT calculations using the parallel transport gauge formalism, and the GPU implementation on Summit. Our implementation can efficiently scale to 786 GPUs for a large system with 1536 silicon atoms, and the wall clock time is only 1.5 hours per femtosecond. This unprecedented speed enables the simulation of large systems with more than 1000 atoms using rt-TDDFT and hybrid functional.
The non-local van der Waals density functional (vdW-DF) has had tremendous success since its inception in 2004 due to its constraint-based formalism that is rigorously derived from a many-body starting point. However, while vdW-DF can describe bindin g energies and structures for van der Waals complexes and mixed systems with good accuracy, one long-standing criticism---also since its inception---has been that the $C_6$ coefficients that derive from the vdW-DF framework are largely inaccurate and can be wrong by more than a factor of two. It has long been thought that this failure to describe the $C_6$ coefficients is a conceptual flaw of the underlying plasmon framework used to derive vdW-DF. We prove here that this is not the case and that accurate $C_6$ coefficient can be obtained without sacrificing the accuracy at binding separations from a modified framework that is fully consistent with the constraints and design philosophy of the original vdW-DF formulation. Our design exploits a degree of freedom in the plasmon-dispersion model $omega_{mathbf{q}}$, modifying the strength of the long-range van der Waals interaction and the cross-over from long to short separations, with additional parameters tuned_ to reference systems. Testing the new formulation for a range of different systems, we not only confirm the greatly improved description of $C_6$ coefficients, but we also find excellent performance for molecular dimers and other systems. The importance of this development is not necessarily that particular aspects such as $C_6$ coefficients or binding energies are improved, but rather that our finding opens the door for further conceptual developments of an entirely unexplored direction within the exact same constrained-based non-local framework that made vdW-DF so successful in the first place.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا