ﻻ يوجد ملخص باللغة العربية
This article presents studies on low-field electrical conduction in the range 4-to-300 K for a ultrafast material: InGaAs:ErAs grown by molecular beam epitaxy. The unique properties include nano-scale ErAs crystallines in host semiconductor, a deep Fermi level, and picosecond ultrafast photocarrier recombination. As the temperature drops, the conduction mechanisms are in the sequence of thermal activation, nearest-neighbor hopping, variable-range hopping, and Anderson localization. In the low-temperature limit, finite-conductivity metallic behavior, not insulating, was observed. This unusual conduction behavior is explained with the Abrahams scaling theory.
The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain bound
The industrial realization of graphene has so far been limited by challenges related to the quality, reproducibility, and high process temperatures required to manufacture graphene on suitable substrates. We demonstrate that epitaxial graphene can be
The contribution of bulk and surface to the electrical resistance along crystallographic textit{b}- and textit{c}-axes as a function of crystal thickness gives evidence for a temperature independent surface states in an antiferromagnetic narrow-gap s
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room-temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physic
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called pl