ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent diffraction of thermal currents in Josephson tunnel junctions

127   0   0.0 ( 0 )
 نشر من قبل Francesco Giazotto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate heat transport in temperature-biased Josephson tunnel junctions in the presence of an in-plane magnetic field. In full analogy with the Josephson critical current, the phase-dependent component of the heat flux through the junction displays coherent diffraction. Thermal transport is analyzed in three prototypical junction geometries highlighting their main differences. Notably, minimization of the Josephson coupling energy requires the quantum phase difference across the junction to undergo pi-slips in suitable intervals of magnetic flux. An experimental setup suited to detect thermal diffraction is proposed and analyzed.



قيم البحث

اقرأ أيضاً

Inspired by a recent experiment, we study the influence of thermal fluctuations on the $I$-$V$ characteristics of a Josephson junction, coupled to a strongly resistive environment. We obtain analytical results in the limit where the Josephson energy is larger than the charging energy and quasiparticles are absent.
We investigate electronic thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions. Ferromagnetic insulators coupled to superconductors are known to induce sizable spin splitting in the superconducting density of states , and also lead to efficient spin filtering if operated as tunnel barriers. The combination of spin splitting and spin filtering is shown to yield a substantial self-amplification of the electronic heat diode effect due to breaking of the electron-hole symmetry in the system which is added to the thermal asymmetry of the junction. Large spin splitting and large spin polarization can potentially lead to thermal rectification efficiency exceeding 5 .10^4 for realistic parameters in a suitable temperature range, thereby outperforming up to a factor of 250 the heat diode effect achievable with conventional superconducting tunnel junctions. These results could be relevant for improved mastering of the heat currents in innovative phase-coherent caloritronic nanodevices, and for enhanced thermal management of quantum circuits at the nanoscale.
We theoretically propose a phase-coherent thermal circulator based on ballistic multiterminal Josephson junctions. The breaking of time-reversal symmetry by either a magnetic flux or a superconducting phase bias allows heat to flow preferentially in one direction from one terminal to the next while heat flow in the opposite direction is suppressed. We find that our device can achieve a high circulation efficiency over a wide range of parameters and that its performance is robust with respect to the presence of disorder. We provide estimates for the expected heat currents for realistic samples.
We theoretically investigate the critical current of a thermally-biased SIS Josephson junction formed by electrodes made by different BCS superconductors. The response of the device is analyzed as a function of the asymmetry parameter, $r=T_{c_1} /T_ {c_2}$. We highlight the appearance of jumps in the critical current of an asymmetric junction, namely, when $r eq1$. In fact, in such case at temperatures at which the BCS superconducting gaps coincide, the critical current suddenly increases or decreases. In particular, we thoroughly discuss the counterintuitively behaviour of the critical current, which increases by enhancing the temperature of one lead, instead of monotonically reducing. In this case, we found that the largest jump of the critical current is obtained for moderate asymmetries, $rsimeq3$. In view of these results, the discussed behavior can be speculatively proposed as a temperature-based threshold single-photon detector with photon-counting capabilities, which operates non-linearly in the non-dissipative channel.
We investigate the proximity effect in junctions between $N=3$ superconductors under commensurate voltage bias. The bias is chosen to highlight the role of transport processes that exchange multiple Cooper pairs coherently between more than two super conductors. Such non-local processes can be studied in the dc response, where local transport processes do not contribute. We focus on the proximity-induced normal density of states that we investigate in a wide parameter space. We reveal the presence of deep and highly tunable pseudogaps and other rich structures. These are due to a static proximity effect that is absent for $N=2$ and is sensitive to an emergent superconducting phase associated to non-local coherent transport. In comparison with results for $N=2$, we find similarities in the signature peaks of multiple Andreev reflections. We discuss the effect of electron-hole decoherence and of various types of junction asymmetries. Our predictions can be investigated experimentally using tunneling spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا