ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical detection of radio waves through a nanomechanical transducer

191   0   0.0 ( 0 )
 نشر من قبل Albert Schliesser
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-loss transmission and sensitive recovery of weak radio-frequency (rf) and microwave signals is an ubiquitous technological challenge, crucial in fields as diverse as radio astronomy, medical imaging, navigation and communication, including those of quantum states. Efficient upconversion of rf-signals to an optical carrier would allow transmitting them via optical fibers dramatically reducing losses, and give access to the mature toolbox of quantum optical techniques, routinely enabling quantum-limited signal detection. Research in the field of cavity optomechanics has shown that nanomechanical oscillators can couple very strongly to either microwave or optical fields. An oscillator accommodating both functionalities would bear great promise as the intermediate platform in a radio-to-optical transduction cascade. Here, we demonstrate such an opto-electro-mechanical transducer utilizing a high-Q nanomembrane. A moderate voltage bias (<10V) is sufficient to induce strong coupling between the voltage fluctuations in a rf resonance circuit and the membranes displacement, which is simultaneously coupled to light reflected off its metallized surface. The circuit acts as an antenna; the voltage signals it induces are detected as an optical phase shift with quantum-limited sensitivity. The half-wave voltage is in the microvolt range, orders of magnitude below that of standard optical modulators. The noise added by the membrane is suppressed by the electro-mechanical cooperativity C~6800 and has a temperature of 40mK, far below 300K where the entire device is operated. This corresponds to a sensitivity limit as low as 5 pV/Hz^1/2, or -210dBm/Hz in a narrow band around 1 MHz. Our work introduces an entirely new approach to all-optical, ultralow-noise detection of classical electronic signals, and sets the stage for coherent upconversion of low-frequency quantum signals to the optical domain.



قيم البحث

اقرأ أيضاً

Confining a laser field between two high reflectivity mirrors of a high-finesse cavity can increase the probability of a given cavity photon to be scattered by an atom traversing the confined photon mode. This enhanced coupling between light and atom s is successfully employed in cavity quantum electrodynamics experiments and led to a very prolific research in quantum optics. The idea of extending such experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling. Here we present an experiment involving a single nanorod consisting of about 10^9 atoms precisely positioned to plunge into the confined mode of a miniature high finesse Fabry-Perot cavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. While an imprint of the vibration dynamics is directly detected in the optical transmission, back-action of the light field is also anticipated to quench the nanorod Brownian motion. This experiment shows the first step towards optical cavity controlled dynamics of mechanical nanostructures and opens up new perspectives for sensing and manipulation of optomechanical nanosystems.
The efficient cooling of the nanomechanical resonators is essential to exploration of quantum properties of the macroscopic or mesoscopic systems. We propose such a laser-cooling scheme for a nanomechanical cantilever, which works even for the low-fr equency mechanical mode and under weak cooling lasers. The cantilever is attached by a diamond nitrogen-vacancy center under a strong magnetic field gradient and the cooling is assisted by a dynamical Stark-shift gate. Our scheme can effectively enhance the desired cooling efficiency by avoiding the off-resonant and unexpected carrier transitions, and thereby cool the cantilever down to the vicinity of the vibrational ground state in a fast fashion.
Optical orbital angular momentum (OAM) provides an additional dimension for photons to carry information in high-capacity optical communication. Although the practical needs have intrigued the generations of miniaturized devices to manipulate the OAM modes in various integrated platforms, the on-chip OAM detection is still challenging to match the newly-developed compact OAM emitter and OAM transmission fiber. Here, we demonstrate an ultra-compact device, i.e., a single plasmonic nanohole, to efficiently measure an optical beams OAM state in a nondestructive way. The device size is reduced down to a few hundreds of nanometers, which can be easily fabricated and installed in the current OAM devices. It is a flexible and robust way for in-situ OAM monitoring and detection in optical fiber networks and long-distance optical communication systems. With proper optimization of the nanohole parameters, this approach could be further extended to discriminate the OAM information multiplexed in multiple wavelengths and polarizations.
One of the fundamental limitations in photonics is the lack of a bidirectional transducer that can convert optical information into electronic signals or vice versa. In acoustics or at microwave frequencies, wave signals can be simultaneously measure d and modulated by a single transducer. In optics, however, optical fields are generally measured via reference-based interferometry or holography using silicone-based image sensors, whereas they are modulated using spatial light modulators. Here, we propose a scheme for an optical bidirectional transducer using a spatial light modulator. By exploiting the principle of time-reversal symmetry of light scattering, two-dimensional reference-free measurement and modulation of optical fields are realized. We experimentally demonstrate the optical bidirectional transducer for optical information consisting of 128 x 128 spatial modes at visible and short-wave infrared wavelengths.
We analyse the temporal properties of the optical pulse wave that is obtained by applying a set of spectral $pi/2$ phase shifts to continuous-wave light that is phase-modulated by a temporal sinusoidal wave. We develop an analytical model to describe this new optical waveform that we name besselon. We also discuss the reduction of sidelobes in the wave intensity profile by means of an additional spectral $pi$ phase shift, and show that the resulting pulses can be efficiently time-interleaved. The various predicted properties of the besselon are confirmed by experiments demonstrating the generation of low-duty cycle, high-quality pulses at repetition rates up to 28 GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا