ﻻ يوجد ملخص باللغة العربية
Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multi-dimensional regional-scale transport. The underlying concept is based on previous observations that solutions to space-fractional ADEs, which can describe super-diffusive dispersion, can be obtained by transforming solutions of classical ADEs. The transformations are equivalent to randomizing particle travel time or relative velocity for each model time step. Here, the time randomizing procedure known as subordination is applied to flow field output from MODFLOW simulations. Numerical tests check the applicability of the novel method in mapping regional-scale super-diffusive transport conditioned on local properties of multi-dimensional heterogeneous media.
We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated
The representation of nonlinear sub-grid processes, especially clouds, has been a major source of uncertainty in climate models for decades. Cloud-resolving models better represent many of these processes and can now be run globally but only for shor
SUMMARY We report a new method to infer continuous time series of the declination, inclination and intensity of the magnetic field from archeomagnetic data. Adopting a Bayesian perspective, we need to specify a priori knowledge about the time evoluti
Full--waveform inversion (FWI) is a method used to determine properties of the Earth from information on the surface. We use the squared Wasserstein distance (squared $W_2$ distance) as an objective function to invert for the velocity of seismic wave
Reprocessing of regional-scale airborne electromagnetic data (AEM) is used to build a 3D geomodel of the Nasia sub-basin. The resulting 3D geomodel integrates all the prior pieces of information brought by electromagnetic data, lithologic logs, and p