ترغب بنشر مسار تعليمي؟ اضغط هنا

Incorporating the influence of sub-grid heterogeneity in regional-scale contaminant transport models

153   0   0.0 ( 0 )
 نشر من قبل Boris Baeumer
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Numerical transport models based on the advection-dispersion equation (ADE) are built on the assumption that sub-grid cell transport is Fickian such that dispersive spreading around the average velocity is symmetric and without significant tailing on the front edge of a solute plume. However, anomalous diffusion in the form of super-diffusion due to preferential pathways in an aquifer has been observed in field data, challenging the assumption of Fickian dispersion at the local scale. This study develops a fully Lagrangian method to simulate sub-grid super-diffusion in a multi-dimensional regional-scale transport. The underlying concept is based on previous observations that solutions to space-fractional ADEs, which can describe super-diffusive dispersion, can be obtained by transforming solutions of classical ADEs. The transformations are equivalent to randomizing particle travel time or relative velocity for each model time step. Here, the time randomizing procedure known as subordination is applied to flow field output from MODFLOW simulations. Numerical tests check the applicability of the novel method in mapping regional-scale super-diffusive transport conditioned on local properties of multi-dimensional heterogeneous media.



قيم البحث

اقرأ أيضاً

We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated sandpipers (Calidris pussila) for which we extend existing stopover models to allow for individuals to have different behaviour in terms of their stopover duration at the site. We demonstrate the use of reversible jump MCMC methods to derive posterior distributions for the model parameters and the models, simultaneously. The algorithm moves between models with different numbers of arrival groups as well as between models with different numbers of behavioural groups. The approach is shown to provide new ecological insights about the stopover behaviour of semipalmated sandpipers but is generally applicable to any population in which animals arrive in groups and potentially exhibit heterogeneity in terms of one or more other processes.
The representation of nonlinear sub-grid processes, especially clouds, has been a major source of uncertainty in climate models for decades. Cloud-resolving models better represent many of these processes and can now be run globally but only for shor t-term simulations of at most a few years because of computational limitations. Here we demonstrate that deep learning can be used to capture many advantages of cloud-resolving modeling at a fraction of the computational cost. We train a deep neural network to represent all atmospheric sub-grid processes in a climate model by learning from a multi-scale model in which convection is treated explicitly. The trained neural network then replaces the traditional sub-grid parameterizations in a global general circulation model in which it freely interacts with the resolved dynamics and the surface-flux scheme. The prognostic multi-year simulations are stable and closely reproduce not only the mean climate of the cloud-resolving simulation but also key aspects of variability, including precipitation extremes and the equatorial wave spectrum. Furthermore, the neural network approximately conserves energy despite not being explicitly instructed to. Finally, we show that the neural network parameterization generalizes to new surface forcing patterns but struggles to cope with temperatures far outside its training manifold. Our results show the feasibility of using deep learning for climate model parameterization. In a broader context, we anticipate that data-driven Earth System Model development could play a key role in reducing climate prediction uncertainty in the coming decade.
SUMMARY We report a new method to infer continuous time series of the declination, inclination and intensity of the magnetic field from archeomagnetic data. Adopting a Bayesian perspective, we need to specify a priori knowledge about the time evoluti on of the magnetic field. It consists in a time correlation function that we choose to be compatible with present knowledge about the geomagnetic time spectra. The results are presented as distributions of possible values for the declination, inclination or intensity. We find that the methodology can be adapted to account for the age uncertainties of archeological artefacts and we use Markov Chain Monte Carlo to explore the possible dates of observations. We apply the method to intensity datasets from Mari, Syria and to intensity and directional datasets from Paris, France. Our reconstructions display more rapid variations than previous studies and we find that the possible values of geomagnetic field elements are not necessarily normally distributed. Another output of the model is better age estimates of archeological artefacts.
340 - Srinath Mahankali 2020
Full--waveform inversion (FWI) is a method used to determine properties of the Earth from information on the surface. We use the squared Wasserstein distance (squared $W_2$ distance) as an objective function to invert for the velocity of seismic wave s as a function of position in the Earth, and we discuss its convexity with respect to the velocity parameter. In one dimension, we consider constant, piecewise increasing, and linearly increasing velocity models as a function of position, and we show the convexity of the squared $W_2$ distance with respect to the velocity parameter on the interval from zero to the true value of the velocity parameter when the source function is a probability measure. Furthermore, we consider a two--dimensional model where velocity is linearly increasing as a function of depth and prove the convexity of the squared $W_2$ distance in the velocity parameter on large regions containing the true value. We discuss the convexity of the squared $W_2$ distance compared with the convexity of the squared $L^2$ norm, and we discuss the relationship between frequency and convexity of these respective distances. We also discuss multiple approaches to optimal transport for non--probability measures by first converting the wave data into probability measures.
Reprocessing of regional-scale airborne electromagnetic data (AEM) is used to build a 3D geomodel of the Nasia sub-basin. The resulting 3D geomodel integrates all the prior pieces of information brought by electromagnetic data, lithologic logs, and p rior geological knowledge. The AEM data, consisting of GEOTEM B-field data, were originally collected for mineral exploration. Thus, those B-field data had to be (re)processed and properly inverted as the original survey and data handling were designed for the detection of potential mineral targets and not for detailed geological mapping. These new
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا