ترغب بنشر مسار تعليمي؟ اضغط هنا

Next-Generation Liquid-Scintillator-Based Detectors: Quantums Dots and Picosecond Timing

290   0   0.0 ( 0 )
 نشر من قبل Lindley Winslow
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lindley Winslow




اسأل ChatGPT حول البحث

Liquid-scintillator-based detectors are a robust technology that scales well to large volumes. For this reason, they are attractive for experiments searching for neutrinoless double-beta decay. A combination of improved photo-detection technology and novel liquid scintillators may allow for the extraction of particle direction in addition to the total energy of the particle. Such an advance would find applications beyond searches for neutrinoless double-beta decay.



قيم البحث

اقرأ أيضاً

This paper presents studies of the performance of water-based liquid scintillator in both 1-kt and 50-kt detectors. Performance is evaluated in comparison to both pure water Cherenkov detectors and a nominal model for pure scintillator detectors. Per formance metrics include energy, vertex, and angular resolution, along with a metric for ability to separate the Cherenkov from the scintillation signal, as being representative of various particle identification capabilities that depend on the Cherenkov / scintillation ratio. We also modify the time profile of scintillation light to study the same performance metrics as a function of rise and decay time. We go on to interpret these results in terms of their impact on certain physics goals, such as solar neutrinos and the search for Majorana neutrinos. This work supports and validates previous results, and the assumptions made therein, by using a more complete detector model and full reconstruction. We confirm that a high-coverage, 50-kt detector would be capable of better than 10 (1)% precision on the CNO neutrino flux with a WbLS (pure LS) target in 5 years of data taking. A 1-kt LS detector, with a conservative 50% fiducial volume of 500~t, can achieve a better than 5% detection. Using the liquid scintillator model, we find a sensitivity into the normal hierarchy region for Majorana neutrinos, with half life sensitivity of $T^{0 ubetabeta}_{1/2} > 1.4 times 10^{28}$ years at 90% CL for 10 years of data taking with a Te-loaded target.
Liquid scintillator detectors are widely used in modern neutrino studies. The unique optical properties of semiconducting nanocrystals, known as quantum dots, offer intriguing possibilities for improving standard liquid scintillator, especially when combined with new photodetection technology. Quantum dots also provide a means to dope scintillator with candidate isotopes for neutrinoless double beta decay searches. In this work, the first studies of the scintillation properties of quantum-dot-doped liquid scintillator using both UV light and radioactive sources are presented.
110 - A. Li , A. Elagin , S. Fraker 2018
Cosmic muon spallation backgrounds are ubiquitous in low-background experiments. For liquid scintillator-based experiments searching for neutrinoless double-beta decay, the spallation product $^{10}$C is an important background in the region of inter est between 2-3 MeV and determines the depth requirement for the experiment. We have developed an algorithm based on a convolutional neural network that uses the temporal and spatial correlations in light emissions to identify $^{10}$C background events. With a typical kiloton-scale detector configuration like the KamLAND detector, we find that the algorithm is capable of identifying 61.6% of the $^{10}$C at 90% signal acceptance. A detector with perfect light collection could identify 98.2% at 90% signal acceptance. The algorithm is independent of vertex and energy reconstruction, so it is complementary to current methods and can be expanded to other background sources.
The experimental efforts characterizing the era of precision neutrino physics revolve around collecting high-statistics neutrino samples and attaining an excellent energy and position resolution. Next generation liquid-based neutrino detectors, such as JUNO, HyperKamiokande, etc, share the use of a large target mass, and the need of pushing light collection to the edge for maximal calorimetric information. Achieving high light collection implies considerable costs, especially when considering detector masses of several kt. A traditional strategy to maximize the effective photo-coverage with the minimum number of PMTs relies on Light Concentrators (LC), such as Winston Cones. In this paper, the authors introduce a novel concept called Occulting Light Concentrators (OLC), whereby a traditional LC gets tailored to a conventional PMT, by taking into account its single-photoelectron collection efficiency profile and thus occulting the worst performing portion of the photocathode. Thus, the OLC shape optimization takes into account not only the optical interface of the PMT, but also the maximization of the PMT detection performances. The light collection uniformity across the detector is another advantage of the OLC system. By considering the case of JUNO, we will show OLC capabilities in terms of light collection and energy resolution.
84 - M. Jadhav 2020
This paper presents results that take a critical step toward proving 10 ps timing resolutions feasibility for particle identification in the TOPSiDE detector concept for the Electron-Ion Collider. Measurements of LGADs with a thickness of 35 micro-m and 50 micro-m are evaluated with a 120 GeV proton beam. The performance of the gain and timing response is assessed, including the dependence on the reverse bias voltage and operating temperature. The best timing resolution of UFSDs in a test beam to date is achieved using three combined planes of 35 micro-m thick LGADs at -30 degree celsius with a precision of 14.3 ps (uncertainty 1.5 ps).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا