ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

118   0   0.0 ( 0 )
 نشر من قبل Masayuki Kuzuhara
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800--1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of ~30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510 [+30, -20] K) and has a bluer color (J-H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.



قيم البحث

اقرأ أيضاً

Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple star system and characterize its atmospheric properties through near-infra red spectroscopy. The semi-major axis of the planet is closer relative to that of its hierarchical triple star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multi-star systems. HD 131399Ab is one of the lowest mass (4+/-1 MJup) and coldest (850+/-50 K) exoplanets to have been directly imaged.
Most exoplanets detected by direct imaging so far have been characterized by relatively hot (> ~1000 K) and cloudy atmospheres. A surprising feature in some of their atmospheres has been a distinct lack of methane, possibly implying non-equilibrium c hemistry. Recently, we reported the discovery of a planetary companion to the Sun-like star GJ 504 using Subaru/HiCIAO within the SEEDS survey. The planet is substantially colder (<600 K) than previously imaged planets, and has indications of fewer clouds, which implies that it represents a new class of planetary atmospheres with expected similarities to late T-type brown dwarfs in the same temperature range. If so, one might also expect the presence of significant methane absorption, which is characteristic of such objects. Here, we report the detection of deep methane absorption in the atmosphere of GJ 504 b, using the Spectral Differential Imaging mode of HiCIAO to distinguish the absorption feature around 1.6 um. We also report updated JHK photometry based on new Ks-band data and a re-analysis of the existing data. The results support the notion that GJ 504 b has atmospheric properties distinct from other imaged exoplanets, and will become a useful reference object for future planets in the same temperature range.
We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, $m_{rm Kp} = 11.6$, $T_{rm eff} = 5576$ K, $M_star = 0.98, M_odot$). The planet transits every 9.43 days, with apparent depth variatio ns and brightening anomalies caused by large starspots. The planets radius is $6.1 pm 0.2 R_{earth}$, based on the transit light curve and the estimated stellar parameters. The planets mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit we can place a rough upper bound of $120 M_{earth}$ (3$sigma$). The host star has a high obliquity ($psi$ = $104^{circ}$), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.
As gas giant planets and brown dwarfs radiate away the residual heat from their formation, they cool through a spectral type transition from L to T, which encompasses the dissipation of cloud opacity and the appearance of strong methane absorption. W hile there are hundreds of known T-type brown dwarfs, the first generation of directly-imaged exoplanets were all L-type. Recently, Kuzuhara et al. (2013) announced the discovery of GJ 504 b, the first T dwarf exoplanet. GJ 504 b provides a unique opportunity to study the atmosphere of a new type of exoplanet with a ~500 K temperature that bridges the gap between the first directly imaged planets (~1000 K) and our own Solar Systems Jupiter (~130 K). We observed GJ 504 b in three narrow L-band filters (3.71, 3.88, and 4.00 microns), spanning the red end of the broad methane fundamental absorption feature (3.3 microns) as part of the LEECH exoplanet imaging survey. By comparing our new photometry and literature photometry to a grid of custom model atmospheres, we were able to fit GJ 504 bs unusual spectral energy distribution for the first time. We find that GJ 504 b is well-fit by models with the following parameters: T_eff=544+/-10 K, g<600 m/s^2, [M/H]=0.60+/-0.12, cloud opacity parameter of f_sed=2-5, R=0.96+/-0.07 R_Jup, and log(L)=-6.13+/-0.03 L_Sun, implying a hot start mass of 3-30 M_jup for a conservative age range of 0.1-6.5 Gyr. Of particular interest, our model fits suggest that GJ 504 b has a super-stellar metallicity. Since planet formation can create objects with non-stellar metallicities, while binary star formation cannot, this result suggests that GJ 504 b formed like a planet, not like a binary companion.
We report the discovery of a cold planet with a very low planet/host mass ratio of $q=(4.09pm0.27) times 10^{-5}$, which is similar to the ratio of Uranus/Sun ($q=4.37 times 10^{-5}$) in the Solar system. The Bayesian estimates for the host mass, pla net mass, system distance, and planet-host projected separation are $M_{rm host}=0.76pm 0.40 M_odot$, $M_{rm planet}=10.3pm 5.5 M_oplus$, $D_{rm L} = 3.3pm1.3,{rm kpc}$, and $a_perp = 3.3pm 1.4,{rm au}$, respectively. The consistency of the color and brightness expected from the estimated lens mass and distance with those of the blend suggests the possibility that the most blended light comes from the planet host, and this hypothesis can be established if high resolution images are taken during the next (2020) bulge season. We discuss the importance of conducting optimized photometry and aggressive follow-up observations for moderately or very high magnification events to maximize the detection rate of planets with very low mass ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا