ترغب بنشر مسار تعليمي؟ اضغط هنا

Subdifferential calculus and doubly nonlinear evolution equations in L^p spaces with variable exponents

94   0   0.0 ( 0 )
 نشر من قبل Giulio Schimperna
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with the Cauchy-Dirichlet problem for a doubly nonlinear parabolic equation involving variable exponents and provides some theorems on existence and regularity of strong solutions. In the proof of these results, we also analyze the relations occurring between Lebesgue spaces of space-time variables and Lebesgue-Bochner spaces of vector-valued functions, with a special emphasis on measurability issues and particularly referring to the case of space-dependent variable exponents. Moreover, we establish a chain rule for (possibly nonsmooth) convex functionals defined on variable exponent spaces. Actually, in such a peculiar functional setting the proof of this integration formula is nontrivial and requires a proper reformulation of some basic concepts of convex analysis, like those of resolvent, of Yosida approximation, and of Moreau-Yosida regularization.



قيم البحث

اقرأ أيضاً

185 - Yihong Du , Alejandro Garriz , 2020
We study a family of reaction-diffusion equations that present a doubly nonlinear character given by a combination of the $p$-Laplacian and the porous medium operators. We consider the so-called slow diffusion regime, corresponding to a degenerate be haviour at the level 0, ormalcolor in which nonnegative solutions with compactly supported initial data have a compact support for any later time. For some results we will also require $pge2$ to avoid the possibility of a singular behaviour away from 0. Problems in this family have a unique (up to translations) travelling wave with a finite front. When the initial datum is bounded, radially symmetric and compactly supported, we will prove that solutions converging to 1 (which exist, as we show, for all the reaction terms under consideration for wide classes of initial data) do so by approaching a translation of this unique traveling wave in the radial direction, but with a logarithmic correction in the position of the front when the dimension is bigger than one. As a corollary we obtain the asymptotic location of the free boundary and level sets in the non-radial case up to an error term of size $O(1)$. In dimension one we extend our results to cover the case of non-symmetric initial data, as well as the case of bounded initial data with supporting sets unbounded in one direction of the real line. A main technical tool of independent interest is an estimate for the flux. Most of our results are new even for the special cases of the porous medium equation and the $p$-Laplacian evolution equation.
In this contribution, we study a class of doubly nonlinear elliptic equations with bounded, merely integrable right-hand side on the whole space $mathbb{R}^N$. The equation is driven by the fractional Laplacian $(-Delta)^{frac{s}{2}}$ for $sin (0,1]$ and a strongly continuous nonlinear perturbation of first order. It is well known that weak solutions are in genreral not unique in this setting. We are able to prove an $L^1$-contraction and comparison principle and to show existence and uniqueness of entropy solutions.
We study uniqueness of solutions to degenerate parabolic problems, posed in bounded domains, where no boundary conditions are imposed. Under suitable assumptions on the operator, uniqueness is obtained for solutions that satisfy an appropriate integr al condition; in particular, such condition holds for possibly unbounded solutions belonging to a suitable weighted $L^1$ space.
In this paper we study the $(BV,L^p)$-decomposition, $p=1,2$, of functions in metric random walk spaces, a general workspace that includes weighted graphs and nonlocal models used in image processing. We obtain the Euler-Lagrange equations of the cor responding variational problems and their gradient flows. In the case $p=1$ we also study the associated geometric problem and the thresholding parameters.
We consider wave equations with time-independent coefficients that have $C^{1,1}$ regularity in space. We show that, for nontrivial ranges of $p$ and $s$, the standard inhomogeneous initial value problem for the wave equation is well posed in Sobolev spaces $mathcal{H}^{s,p}_{FIO}(mathbb{R}^{n})$ over the Hardy spaces $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$ for Fourier integral operators introduced recently by the authors and Portal, following work of Smith. In spatial dimensions $n = 2$ and $n=3$, this includes the full range $1 < p < infty$. As a corollary, we obtain the optimal fixed-time $L^{p}$ regularity for such equations, generalizing work of Seeger, Sogge and Stein in the case of smooth coefficients.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا