ﻻ يوجد ملخص باللغة العربية
The coupled discrete linear and Kerr nonlinear Schrodinger equations with gain and loss describing transport on dimers with parity-time PT symmetric potentials are considered. The model is relevant among others to experiments in optical couplers and proposals on Bose-Einstein condensates in PT symmetric double-well potentials. It is known that the models are integrable. Here, the integrability is exploited further to construct the phase-portraits of the system. A pendulum equation with a linear potential and a constant force for the phase-difference between the fields is obtained, which explains the presence of unbounded solutions above a critical threshold parameter. The behaviour of all solutions of the system, including changes in the topological structure of the phase-plane, is then discussed.
A Parity-Time (PT)-symmetric system with periodically varying-in-time gain and loss modeled by two coupled Schrodinger equations (dimer) is studied. It is shown that the problem can be reduced to a perturbed pendulum-like equation. This is done by fi
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states.
We describe a technique to emulate a two-level PT-symmetric spin Hamiltonian, replete with gain and loss, using only the unitary dynamics of a larger quantum system. This we achieve by embedding the two-level system in question in a subspace of a fou
We show that complex PT-symmetric photonic lattices can lead to a new class of self-imaging Talbot effects. For this to occur, we find that the input field pattern, has to respect specific periodicities which are dictated by the symmetries of the sys
We study the existence and stability of fundamental bright discrete solitons in a parity-time (PT)-symmetric coupler composed by a chain of dimers, that is modelled by linearly coupled discrete nonlinear Schrodinger equations with gain and loss terms