ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2011fe: A Laboratory for Testing Models of Type Ia Supernovae

551   0   0.0 ( 0 )
 نشر من قبل Laura Chomiuk
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Laura Chomiuk




اسأل ChatGPT حول البحث

SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi-wavelength telescope era, and it also represents the earliest discovery of a SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarize the extensive suite of panchromatic data on SN 2011fe, and gather interpretations of these data to answer four key questions: 1) What explodes in a SN Ia? 2) How does it explode? 3) What is the progenitor of SN 2011fe? and 4) How accurate are SNe Ia as standardizeable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs.



قيم البحث

اقرأ أيضاً

In the single degenerate scenario for Type Ia supernova (SNeIa), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, whi ch can increase the critical mass, $M_{crit}$, needed for explosion. When $M_{crit}$ is higher than the maximum mass achieved by the WD, the WD must spin down before it can explode. This introduces a delay between the time at which the WD has completed its epoch of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WDs mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-$M_{Ch}$ WDs in either wide binaries with WD companions, or else in cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNeIa.
Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 A. We focus on spectra taken within 5 days of maximum brightness. Our sample of ten SNe Ia spans the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 A (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.
We present ultraviolet line identifications of near maximum-light HST observations of SN 2011fe using synthetic spectra generated from both SYNOW and $texttt{PHOENIX}$. We find the spectrum to be dominated by blends of iron group elements Fe, Co, and Ni (as expected due to heavy line blanketing by these elements in the UV) and for the first time identify lines from C IV and Si IV in a supernova spectrum. We also find that classical delayed detonation models of Type Ia supernovae are able to accurately reproduce the flux levels of SN 2011fe in the UV. Further analysis reveals that photionization edges play an important role in feature formation in the far-UV, and that temperature variations in the outer layers of the ejecta significantly alter the Fe III/Fe II ratio producing large flux changes in the far-UV and velocity shifts in mid-UV features. SN 2011fe is the best observed core-normal SNe Ia, therefore analysis its of UV spectra shows the power of UV spectra in discriminating between different metalicities and progenitor scenarios of Type Ia supernovae, due to the fact that the UV probes the outermost layers of the Type Ia supernova, which are most sensitive to metalicity and progenitor variations.
We present late-time optical $R$-band imaging data from the Palomar Transient Factory (PTF) for the nearby type Ia supernova SN 2011fe. The stacked PTF light curve provides densely sampled coverage down to $Rsimeq22$ mag over 200 to 620 days past exp losion. Combining with literature data, we estimate the pseudo-bolometric light curve for this event from 200 to 1600 days after explosion, and constrain the likely near-infrared contribution. This light curve shows a smooth decline consistent with radioactive decay, except over ~450 to ~600 days where the light curve appears to decrease faster than expected based on the radioactive isotopes presumed to be present, before flattening at around 600 days. We model the 200-1600d pseudo-bolometric light curve with the luminosity generated by the radioactive decay chains of $^{56}$Ni, $^{57}$Ni and $^{55}$Co, and find it is not consistent with models that have full positron trapping and no infrared catastrophe (IRC); some additional energy escape other than optical/near-IR photons is required. However, the light curve is consistent with models that allow for positron escape (reaching 75% by day 500) and/or an IRC (with 85% of the flux emerging in non-optical wavelengths by day 600). The presence of the $^{57}$Ni decay chain is robustly detected, but the $^{55}$Co decay chain is not formally required, with an upper mass limit estimated at 0.014 M$_{odot}$. The measurement of the $^{57}$Ni/$^{56}$Ni mass ratio is subject to significant systematic uncertainties, but all of our fits require a high ratio >0.031 (>1.3 in solar abundances).
We report unique EVLA observations of SN 2011fe representing the most sensitive radio study of a Type Ia supernova to date. Our data place direct constraints on the density of the surrounding medium at radii ~10^15-10^16 cm, implying an upper limit o n the mass loss rate from the progenitor system of Mdot <~ 6 x 10^-10 Msol/yr (assuming a wind speed of 100 km/s), or expansion into a uniform medium with density n_CSM <~ 6 cm^-3. Drawing from the observed properties of non-conservative mass transfer among accreting white dwarfs, we use these limits on the density of the immediate environs to exclude a phase space of possible progenitors systems for SN 2011fe. We rule out a symbiotic progenitor system and also a system characterized by high accretion rate onto the white dwarf that is expected to give rise to optically-thick accretion winds. Assuming that a small fraction, 1%, of the mass accreted is lost from the progenitor system, we also eliminate much of the potential progenitor parameter space for white dwarfs hosting recurrent novae or undergoing stable nuclear burning. Therefore, we rule out the most popular single degenerate progenitor models for SN 2011fe, leaving a limited phase space inhabited by some double degenerate systems and exotic progenitor scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا