ترغب بنشر مسار تعليمي؟ اضغط هنا

A diversity of dusty AGN tori: Data release for the VLTI/MIDI AGN Large Program and first results for 23 galaxies

148   0   0.0 ( 0 )
 نشر من قبل Leonard Burtscher
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The AGN-heated dust distribution (the torus) is increasingly recognized not only as the absorber required in unifying models, but as a tracer for the reservoir that feeds the nuclear Super-Massive Black Hole. Yet, even its most basic structural properties (such as its extent, geometry and elongation) are unknown for all but a few archetypal objects. Since most AGNs are unresolved in the mid-infrared, we utilize the MID-infrared interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) that is sensitive to structures as small as a few milli-arcseconds (mas). We present here an extensive amount of new interferometric observations from the MIDI AGN Large Program (2009 - 2011) and add data from the archive to give a complete view of the existing MIDI observations of AGNs. Additionally, we have obtained high-quality mid-infrared spectra from VLT/VISIR. We present correlated and total flux spectra for 23 AGNs and derive flux and size estimates at 12 micron using simple axisymmetric geometrical models. Perhaps the most surprising result is the relatively high level of unresolved flux and its large scatter: The median point source fraction is 70 % for type 1 and 47 % for type 2 AGNs meaning that a large part of the flux is concentrated on scales smaller than about 5 mas (0.1 - 10 pc). Among sources observed with similar spatial resolution, it varies from 20 % - 100 %. For 18 of the sources, two nuclear components can be distinguished in the radial fits. While these models provide good fits to all but the brightest sources, significant elongations are detected in eight sources. The half-light radii of the fainter sources are smaller than expected from the size ~ L^0.5 scaling of the bright sources and show a large scatter, especially when compared to the relatively tight size--luminosity relation in the near-infrared.



قيم البحث

اقرأ أيضاً

We investigated the gravitational microlensing of active galactic nucleus dusty tori in the case of lensed quasars in the infrared domain. The dusty torus is modeled as a clumpy two-phase medium. To obtain spectral energy distributions and images of tori at different wavelengths, we used the 3D Monte Carlo radiative transfer code SKIRT. A ray-shooting technique has been used to calculate microlensing magnification maps. We simulated microlensing by the stars in the lens galaxy for different configurations of the lensed system and different values of the torus parameters, in order to estimate (a) amplitudes and timescales of high magnification events, and (b) the influence of geometrical and physical properties of dusty tori on light curves in the infrared domain. We found that, despite their large size, dusty tori could be significantly affected by microlensing in some cases, especially in the near-infrared domain (rest-frame). The very long time-scales of such events, in the range from several decades to hundreds of years, are limiting the practical use of this method to study the properties of dusty tori. However, our results indicate that, when studying flux ratios between the images in different wavebands of lensed quasars, one should not disregard the possibility that the near and mid-infrared flux ratios could be under the influence of microlensing.
In order to put MIDI/VLTI observations of AGNs on a significant statistical basis, the number of objects had to be increased dramatically from the few prominent bright cases to over 20. For this, correlated fluxes as faint as ~ 150 mJy need to be obs erved, calibrated and their errors be estimated reliably. We have developed new data reduction methods for the coherent estimation of correlated fluxes with the Expert Work Station (EWS). They increase the signal/noise of the reduced correlated fluxes by decreasing the jitter in the group delay estimation. While correlation losses cannot be fully avoided for the weakest objects even with the improved routines, we have developed a method to simulate observations of weak targets and can now detect --- and correct for --- such losses. We have analyzed all sources of error that are relevant for the observations of weak targets. Apart from the photon-noise error, that is usually quoted, there is an additional error from the uncertainty in the calibration (i.e. the conversion factor). With the improved data reduction, calibration and error estimation, we can consistently and reproducibly observe fluxes as weak as ~ 150 mJy with an uncertainty of ~ 15 % under average conditions.
Warm gas and dust surround the innermost regions of active galactic nuclei (AGN). They provide the material for accretion onto the super-massive black hole and they are held responsible for the orientation-dependent obscuration of the central engine. The AGN-heated dust distributions turn out to be very compact with sizes on scales of about a parsec in the mid-infrared. Only infrared interferometry currently provides the necessary angular resolution to directly study the physical properties of this dust. Size estimates for the dust distributions derived from interferometric observations can be used to construct a size--luminosity relation for the dust distributions. The large scatter about this relation suggests significant differences between the dust tori in the individual galaxies, even for nuclei of the same class of objects and with similar luminosities. This questions the simple picture of the same dusty doughnut in all AGN. The Circinus galaxy is the closest Seyfert 2 galaxy. Because its mid-infrared emission is well resolved interferometrically, it is a prime target for detailed studies of its nuclear dust distribution. An extensive new interferometric data set was obtained for this galaxy. It shows that the dust emission comes from a very dense, disk-like structure which is surrounded by a geometrically thick, similarly warm dust distribution as well as significant amounts of warm dust within the ionisation cone.
The emission of warm dust dominates the mid-infrared spectra of active galactic nuclei (AGN). Only interferometric observations provide the necessary angular resolution to resolve the nuclear dust and to study its distribution and properties. The inv estigation of dust in AGN cores is hence one of the main science goals for the MID-infrared Interferometric instrument MIDI at the VLTI. As the first step, the feasibility of AGN observations was verified and the most promising sources for detailed studies were identified. This was carried out in a snapshot survey with MIDI using Guaranteed Time Observations. In the survey, observations were attempted for 13 of the brightest AGN in the mid-infrared which are visible from Paranal. The results of the three brightest, best studied sources have been published in separate papers. Here we present the interferometric observations for the remaining 10, fainter AGN. For 8 of these, interferometric measurements could be carried out. Size estimates or limits on the spatial extent of the AGN-heated dust were derived from the interferometric data of 7 AGN. These indicate that the dust distributions are compact, with sizes on the order of a few parsec. The derived sizes roughly scale with the square root of the luminosity in the mid-infrared, s ~ sqrt(L), with no clear distinction between type 1 and type 2 objects. This is in agreement with a model of nearly optically thick dust structures heated to T ~ 300 K. For three sources, the 10 micron feature due to silicates is tentatively detected either in emission or in absorption. Based on the results for all AGN studied with MIDI so far, we conclude that in the mid-infrared the differences between individual galactic nuclei are greater than the generic differences between type 1 and type 2 objects.
We present the public release of the MultiDark-Galaxies: three distinct galaxy catalogues derived from one of the Planck cosmology MultiDark simulations (i.e. MDPL2, with a volume of (1 Gpc/$h$)$^{3}$ and mass resolution of $1.5 times 10^{9} M_{odot} /h$) by applying the semi-analytic models GALACTICUS, SAG, and SAGE to it. We compare the three models and their conformity with observational data for a selection of fundamental properties of galaxies like stellar mass function, star formation rate, cold gas fractions, and metallicities - noting that they sometimes perform differently reflecting model designs and calibrations. We have further selected galaxy subsamples of the catalogues by number densities in stellar mass, cold gas mass, and star formation rate in order to study the clustering statistics of galaxies. We show that despite different treatment of orphan galaxies, i.e. galaxies that lost their dark-matter host halo due to the finite mass resolution of the N-body simulation or tidal stripping, the clustering signal is comparable, and reproduces the observations in all three models - in particular when selecting samples based upon stellar mass. Our catalogues provide a powerful tool to study galaxy formation within a volume comparable to those probed by on-going and future photometric and redshift surveys. All model data consisting of a range of galaxy properties - including broad-band SDSS magnitudes - are publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا