ﻻ يوجد ملخص باللغة العربية
A new computational method for reconstructing a potential from the Dirichlet-to-Neumann map at positive energy is developed. The method is based on D-bar techniques and it works in absence of exceptional points -- in particular, if the potential is small enough compared to the energy. Numerical tests reveal exceptional points for perturbed, radial potentials. Reconstructions for several potentials are computed using simulated Dirichlet-to-Neumann maps with and without added noise. The new reconstruction method is shown to work well for energy values between $10^{-5}$ and $5$, smaller values giving better results.
In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to
A method for including a priori information in the 2-D D-bar algorithm is presented. Two methods of assigning conductivity values to the prior are presented, each corresponding to a different scenario on applications. The method is tested on several
Objective: To develop, and demonstrate the feasibility of, a novel image reconstruction method for absolute Electrical Impedance Tomography (a-EIT) that pairs deep learning techniques with real-time robust D-bar methods. Approach: A D-bar method is p
The mathematical problem for Electrical Impedance Tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathe
This study suggests a fast computational method for crack propagation, which is based on the extended finite element method (X-FEM). It is well known that the X-FEM might be the most popular numerical method for crack propagation. However, with the i