ﻻ يوجد ملخص باللغة العربية
We derive a Lieb-Robinson bound for the propagation of spin correlations in a model of spins interacting through a bosonic lattice field, which satisfies itself a Lieb-Robinson bound in the absence of spin-boson couplings. We apply these bounds to a system of trapped ions, and find that the propagation of spin correlations, as mediated by the phonons of the ion crystal, can be faster than the regimes currently explored in experiments. We propose a scheme to test the bounds by measuring retarded correlation functions via the crystal fluorescence.
We propose a method of simulating efficiently many-body interacting fermion lattice models in trapped ions, including highly nonlinear interactions in arbitrary spatial dimensions and for arbitrarily distant couplings. We map products of fermionic op
Trapped ions arranged in Coulomb crystals provide us with the elements to study the physics of a single spin coupled to a boson bath. In this work we show that optical forces allow us to realize a variety of spin-boson models, depending on the crysta
Discrete lattice models are a cornerstone of quantum many-body physics. They arise as effective descriptions of condensed matter systems and lattice-regularized quantum field theories. Lieb-Robinson bounds imply that if the degrees of freedom at each
We state and prove four types of Lieb-Robinson bounds valid for many-body open quantum systems with power law decaying interactions undergoing out of equilibrium dynamics. We also provide an introductory and self-contained discussion of the setting a
The generating functional of a self-interacting scalar quantum field theory (QFT), which contains all the relevant information about real-time dynamics and scattering experiments, can be mapped onto a collection of multipartite-entangled two-level se