ترغب بنشر مسار تعليمي؟ اضغط هنا

High-quality multi-GeV electron bunches via cyclotron autoresonance

252   0   0.0 ( 0 )
 نشر من قبل Zoltan Harman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Autoresonance laser acceleration of electrons is theoretically investigated using circularly polarized focused Gaussian pulses. Many-particle simulations demonstrate feasibility of creating over 10-GeV electron bunches of ultra-high quality (relative energy spread of order 10^-4), suitable for fundamental high-energy particle physics research. The laser peak intensities and axial magnetic field strengths required are up to about 10^18 W/cm^2 (peak power ~10 PW) and 60 T, respectively. Gains exceeding 100 GeV are shown to be possible when weakly focused pulses from a 200-PW laser facility are used.



قيم البحث

اقرأ أيضاً

Recently a new injection scheme for Laser Wake Field Acceleration, employing a single 100-TW-class laser system, has been proposed. In the Resonant Multi-Pulse Ionization injection (ReMPI) a resonant train of pulses drives a large amplitude plasma wa ve that traps electrons extracted from the plasma by further ionization of a high-Z dopant (Argon in the present paper). While the pulses of the driver train have intensity below the threshold for the dopants ionization, the properly delayed and frequency doubled (or more) ionization pulse possesses an electric field large enough to extract electrons, though its normalized amplitude is well below unity. In this paper we will report on numerical simulations results aimed at the generation of GeV-scale bunches with normalized emittance and {it rms} energy below $80, nm times rad $ and $0.5, %$, respectively. Analytical consideration of the FEL performance for a $1.3, GeV$ bunch will be also reported.
Important features of Electron Cyclotron Resonance Ion Source (ECRIS) operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model a dynamics of ions in ECRIS plasma. It is shown that gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for few sources. Changes in the extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.
103 - M. Kando , Y. Fukuda , H. Kotaki 2006
We suggest a novel method for injection of electrons into the acceleration phase of particle accelerators, producing low emittance beams appropriate even for the demanding high energy Linear Collider specifications. In this paper we work out the inje ction into the acceleration phase of the wake field in a plasma behind a high intensity laser pulse, taking advantage of the laser polarization and focusing. With the aid of catastrophe theory we categorize the injection dynamics. The scheme uses the structurally stable regime of transverse wake wave breaking, when electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse in a line-focus with an underdense plasma, the electrons, injected via the transverse wake wave breaking and accelerated by the wake wave, perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with asymmetric emittance (flat beam). An approach for generating flat laser accelerated ion beams is briefly discussed.
Three-dimensional numerical model is developed and applied for studies of physical processes in Electron Cyclotron Resonance Ion Source. The model includes separate modules that simulate the electron and ion dynamics in the source plasma in an iterat ive way. The electron heating by microwaves is simulated by using results of modelling the microwave propagation in the plasma by the COMSOL Multiphysics software. Extracted ion currents and other parameters of the source are obtained for different gas flows into the source. It is observed that the currents are strongly influenced by ion transport in transversal direction induced by the plasma potential gradients. Impact of some special techniques on the source performance is investigated. Magnetic field scaling is shown to reduce the ion losses during their movement toward the extraction aperture, as well as use of the aluminum chamber walls and mixing of the working gas with helium.
A vacuum autoresonance accelerator scheme for electrons, which employs terahertz radiation and currently available magnetic fields, is suggested. Based on numerical simulations, parameter values, which could make the scheme experimentally feasible, are identified and discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا