ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of a Phase of a Radio Wave Reflected from Rock Salt and Ice Irradiated by an Electron Beam for Detection of Ultra-High-Energy Neutrinos

118   0   0.0 ( 0 )
 نشر من قبل Masami Chiba
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have found a radio-wave-reflection effect in rock salt for the detection of ultra-high energy neutrinos which are expected to be generated in Greisen, Zatsepin, and Kuzmin (GZK) processes in the universe. When an UHE neutrino interacts with rock salt or ice as a detection medium, a shower is generated. That shower is formed by hadronic and electromagnetic avalanche processes. The energy of the UHE neutrino shower converts to thermal energy through ionization processes. Consequently, the temperature rises along the shower produced by the UHE neutrino. The refractive index of the medium rises with temperature. The irregularity of the refractive index in the medium leads to a reflection of radio waves. This reflection effect combined with the long attenuation length of radio waves in rock salt and ice would yield a new method to detect UHE neutrinos. We measured the phase of the reflected radio wave under irradiation with an electron beam on ice and rock salt powder. The measured phase showed excellent consistence with the power reflection fraction which was measured directly. A model taking into account the temperature change explained the phase and the amplitude of the reflected wave. Therefore the reflection mechanism was confirmed. The power reflection fraction was compared with that calculated with the Fresnel equations, the ratio between the measured result and that obtained with the Fresnel equations in ice was larger than that of rock salt.



قيم البحث

اقرأ أيضاً

Ultra-high energy neutrinos are detectable through impulsive radio signals generated through interactions in dense media, such as ice. Subsurface in-ice radio arrays are a promising way to advance the observation and measurement of astrophysical high -energy neutrinos with energies above those discovered by the IceCube detector ($geq$1 PeV) as well as cosmogenic neutrinos created in the GZK process ($geq$100 PeV). Here we describe the $textit{NuPhase}$ detector, which is a compact receiving array of low-gain antennas deployed 185 m deep in glacial ice near the South Pole. Signals from the antennas are digitized and coherently summed into multiple beams to form a low-threshold interferometric phased array trigger for radio impulses. The NuPhase detector was installed at an Askaryan Radio Array (ARA) station during the 2017/18 Austral summer season. $textit{In situ}$ measurements with an impulsive, point-source calibration instrument show a 50% trigger efficiency on impulses with voltage signal-to-noise ratios (SNR) of $le$2.0, a factor of $sim$1.8 improvement in SNR over the standard ARA combinatoric trigger. Hardware-level simulations, validated with $textit{in situ}$ measurements, predict a trigger threshold of an SNR as low as 1.6 for neutrino interactions that are in the far field of the array. With the already-achieved NuPhase trigger performance included in ARASim, a detector simulation for the ARA experiment, we find the trigger-level effective detector volume is increased by a factor of 1.8 at neutrino energies between 10 and 100 PeV compared to the currently used ARA combinatoric trigger. We also discuss an achievable near term path toward lowering the trigger threshold further to an SNR of 1.0, which would increase the effective single-station volume by more than a factor of 3 in the same range of neutrino energies.
Existence of GZK neutrinos (ultra high energy neutrinos) have been justified although the flux is very low. A new method is desired to use a huge mass of a detector medium to detect them. A fundamental study of radar method was carried out to measure microwave reflection from electromagnetic energy deposit by X-ray irradiation in a small rock salt sample. The reflection rate of 1x10^-6 was found at the energy deposit of 1x10^19 eV which was proportional to square of the X-ray intensity suggesting the effect to be coherent scattering. The decay time of the reflection was several seconds. This effect implies a large scale natural rock salt formation could be utilized like a bubble chamber irradiated by radio wave instead of visible light to detect GZK neutrinos.
74 - A. Nepomuk Otte 2019
The detection of astrophysical neutrinos by IceCube and the potential to constrain source models of ultra-high energy cosmic rays provide the motivation to develop instruments for the observation of neutrinos above $10^7$ GeV. Among the different tec hniques to detect ultra-high energy neutrinos is the Earth-skimming technique. It makes use of the fact that the tau produced in a tau neutrino interaction inside the Earth can emerge from the ground and initiate an upward-going particle shower in the atmosphere. The particle shower and thus the neutrino can be reconstructed by measuring the Cherenkov and radio emission from the shower particles. In this presentation, we discuss our ongoing development of a Cherenkov telescope for the detection of tau neutrinos, which is to be deployed on the Extreme Universe Space Observatory Super Pressure Balloon 2 (EUSO-SPB2) and is a precursor experiment for the proposed Probe of Extreme Multi-Messenger Astrophysics (POEMMA) mission. POEMMA aims at the detection of ultrahigh energy cosmic rays and ultrahigh energy neutrinos from low earth orbit. The 1 m$^2$ Cherenkov telescope for EUSO-SPB2 will use silicon photomultipliers coupled to a 100 MS/s readout based on the ASIC for General Electronics for TPC`s (AGET) switch capacitor ring sampler. We present the optics, results from our studies to qualify the readout concept and the design of the mechanical integration of the photon detectors and the readout into the telescope.
176 - Tim Huege , Dave Besson 2017
Radio waves, perhaps because they are uniquely transparent in our terrestrial atmosphere, as well as the cosmos beyond, or perhaps because they are macroscopic, so the basic instruments of detection (antennas) are easily constructable, arguably occup y a privileged position within the electromagnetic spectrum, and, correspondingly, receive disproportionate attention experimentally. Detection of radio-frequency radiation, at macroscopic wavelengths, has blossomed within the last decade as a competitive method for measurement of cosmic particles, particularly charged cosmic rays and neutrinos. Cosmic-ray detection via radio emission from extensive air showers has been demonstrated to be a reliable technique that has reached a reconstruction quality of the cosmic-ray parameters competitive with more traditional approaches. Radio detection of neutrinos in dense media seems to be the most promising technique to achieve the gigantic detection volumes required to measure neutrinos at energies beyond the PeV-scale flux established by IceCube. In this article, we review radio detection both of cosmic rays in the atmosphere, as well as neutrinos in dense media.
136 - H. Falcke ASTRON 2004
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based part icle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا