ﻻ يوجد ملخص باللغة العربية
Controlling the electronic properties of interfaces has enormous scientific and technological implications and has been recently extended from semiconductors to complex oxides which host emergent ground states not present in the parent materials. These oxide interfaces present a fundamentally new opportunity where, instead of conventional bandgap engineering, the electronic and magnetic properties can be optimized by engineering quantum many-body interactions. We utilize an integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy system to synthesize and investigate the electronic structure of superlattices of the Mott insulator LaMnO3 and the band insulator SrMnO3. By digitally varying the separation between interfaces in (LaMnO3)2n/(SrMnO3)n superlattices with atomic-layer precision, we demonstrate that quantum many-body interactions are enhanced, driving the electronic states from a ferromagnetic polaronic metal to a pseudogapped insulating ground state. This work demonstrates how many-body interactions can be engineered at correlated oxide interfaces, an important prerequisite to exploiting such effects in novel electronics.
In this paper, we characterize quasicrystalline interacting topological phases of matter i.e., phases protected by some quasicrystalline structure. We show that the elasticity theory of quasicrystals, which accounts for both phonon and phason modes,
The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is curren
Recently Wang and Cheng proposed a self-consistent effective Hamiltonian theory (SCEHT) for many-body fermionic systems (Wang & Cheng, 2019). This paper attempts to provide a mathematical foundation to the formulation of the SCEHT that enables furthe
A numerical bootstrap method is proposed to provide rigorous and nontrivial bounds in general quantum many-body systems with locality. In particular, lower bounds on ground state energies of local lattice systems are obtained by imposing positivity c
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent int