ﻻ يوجد ملخص باللغة العربية
Context. Observations of polarized radio emission show that large-scale (regular) magnetic fields in spiral galaxies are not axisymmetric, but generally stronger in interarm regions. In some nearby galaxies such as NGC 6946 they are organized in narrow magnetic arms situated between the material spiral arms. Aims. The phenomenon of magnetic arms and their relation to the optical spiral arms (the material arms) call for an explanation in the framework of galactic dynamo theory. Several possibilities have been suggested but are not completely satisfactory; here we attempt a consistent investigation. Methods. We use a 2D mean-field dynamo model in the no-z approximation and add injections of small-scale magnetic field, taken to result from supernova explosions, to represent the effects of dynamo action on smaller scales. This injection of small scale field is situated along the spiral arms, where star-formation mostly occurs. Results. A straightforward explanation of magnetic arms as a result of modulation of the dynamo mechanism by material arms struggles to produce pronounced magnetic arms, at least with realistic parameters, without introducing new effects such as a time lag between Coriolis force and {alpha}-effect. In contrast, by taking into account explicitly the small-scale magnetic field that is injected into the arms by the action of the star forming regions that are concentrated there, we can obtain dynamo models with magnetic structures of various forms that can be compared with magnetic arms. (abbrev). Conclusions. We conclude that magnetic arms can be considered as coherent magnetic structures generated by large-scale dynamo action, and associated with spatially modulated small-scale magnetic fluctuations, caused by enhanced star formation rates within the material arms.
One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a gal
Isotropic and anisotropic wavelet transforms are used to decompose the images of the spiral galaxy M83 in various tracers to quantify structures in a range of scales from 0.2 to 10 kpc. We used radio polarization observations at {lambda}6 cm and 13 c
Spiral structure (both flocculent and Grand Design types) is very rarely observed in dwarf galaxies because the formation of spiral arms requires special conditions. In this work we analyze the sample of about 40 dS-galaxies found by scanning by eye
Reconnection heating has been considered as a potential source of the heating of the interstellar medium. In some galaxies, significant polarised radio emission has been found between the spiral arms. This emission has a form of `magnetic arms that r
A model based on disk-stability criteria to determine the number of spiral arms of a general disk galaxy with an exponential disk, a bulge and a dark halo described by a Hernquist model is presented. The multifold rotational symmetry of the spiral st