ﻻ يوجد ملخص باللغة العربية
Majorana fermions, quantum particles that are their own anti-particles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently Majorana fermions have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing between two Fermions with opposite momenta (textit{% i.e.}, zero total momentum). On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states, were predicted 50 years ago and then widely studied in many branches of physics. However, whether FFLO superconductors can also support Majorana fermions has not been explored. Here we show that Majorana fermions can exist in certain types of gapped FFLO states, yielding a new topological quantum matter: topological FFLO superfluids/superconductors. We demonstrate the existence of such topological FFLO superfluids and the associated Majorana fermions using spin-orbit coupled degenerate Fermi gases and derive their physical parameter regions. The potential implementation of topological FFLO superconductors in semiconductor/superconductor heterostructures are also discussed.
We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore
The spontaneous breaking of parity-time ($mathcal{PT}$) symmetry, which yields rich critical behavior in non-Hermitian systems, has stimulated much interest. Whereas most previous studies were performed within the single-particle or mean-field framew
We study a three-component superfluid Fermi gas in a spherically symmetric harmonic trap using the Bogoliubov-deGennes method. We predict a coexistence phase in which two pairing field order parameters are simultaneously nonzero, in stark contrast to
We study the collisionless dynamics of two classes of nonintegrable pairing models. One is a BCS model with separable energy-dependent interactions, the other - a 2D topological superconductor with spin-orbit coupling and a band-splitting external fi
Motivated by recent experiments on atomic Dirac fermions in a tunable honeycomb optical lattice, we study the attractive Hubbard model of superfluidity in the anisotropic honeycomb lattice. At weak-coupling, we find that the maximum mean field pairin