ﻻ يوجد ملخص باللغة العربية
The interstellar medium is the engine room for galactic evolution. While much is known about the conditions within the ISM, many important areas regarding the formation and evolution of the various phases of the ISM leading to star formation, and its role in important astrophysical processes, remain to be explained. This paper discusses several of the fundamental science problems, placing them in context with current activities and capabilities, as well as the future capabilities that are needed to progress them in the decade ahead. Australia has a vibrant research community working on the interstellar medium. This discussion gives particular emphasis to Australian involvement in furthering their work, as part of the wider international endeavour. The particular science programs that are outlined in this White Paper include the formation of molecular clouds, the ISM of the Galactic nucleus, the origin of gamma-rays and cosmic rays, high mass star and cluster formation, the dense molecular medium, galaxy evolution and the diffuse atomic medium, supernova remnants, the role of magnetism and turbulence in the Galactic ecology and complex organic molecules in space.
Magnetism is one of the most important forces on the interstellar medium (ISM), anisotropically regulating the structure and star formation that drive galactic evolution. Recent high dynamic range observations of diffuse gas and molecular clouds have
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and
We map the distribution and properties of the Milky Ways interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H-
With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances
Cyanogen (NCCN) is the simplest member of the dicyanopolyynes group, and has been proposed as a major source of the CN radical observed in cometary atmospheres. Although not detected through its rotational spectrum in the cold interstellar medium, th