ترغب بنشر مسار تعليمي؟ اضغط هنا

The Interstellar Medium White Paper

120   0   0.0 ( 0 )
 نشر من قبل Michael Burton
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interstellar medium is the engine room for galactic evolution. While much is known about the conditions within the ISM, many important areas regarding the formation and evolution of the various phases of the ISM leading to star formation, and its role in important astrophysical processes, remain to be explained. This paper discusses several of the fundamental science problems, placing them in context with current activities and capabilities, as well as the future capabilities that are needed to progress them in the decade ahead. Australia has a vibrant research community working on the interstellar medium. This discussion gives particular emphasis to Australian involvement in furthering their work, as part of the wider international endeavour. The particular science programs that are outlined in this White Paper include the formation of molecular clouds, the ISM of the Galactic nucleus, the origin of gamma-rays and cosmic rays, high mass star and cluster formation, the dense molecular medium, galaxy evolution and the diffuse atomic medium, supernova remnants, the role of magnetism and turbulence in the Galactic ecology and complex organic molecules in space.



قيم البحث

اقرأ أيضاً

Magnetism is one of the most important forces on the interstellar medium (ISM), anisotropically regulating the structure and star formation that drive galactic evolution. Recent high dynamic range observations of diffuse gas and molecular clouds have revealed new links between interstellar structures and the ambient magnetic field. ISM morphology encodes rich physical information, but deciphering it requires high-resolution measurements of the magnetic field: linear polarization of starlight and dust emission, and Zeeman splitting. These measure different components of the magnetic field, and crucially, Zeeman splitting is the only way to directly measure the field strength in the ISM. We advocate a statistically meaningful survey of magnetic field strengths using the 21-cm line in absorption, as well as an observational test of the link between structure formation and field strength using the 21-cm line in emission. Finally, we report on the serendipitous discovery of linear polarization of the 21-cm line, which demands both theoretical and observational follow-up.
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
We map the distribution and properties of the Milky Ways interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H- band, at ~1.527 microns, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 magnitudes of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (W_DIB) and extinction, with a power law index of 1.01 +/- 0.01, a mean relationship of W_DIB/A_V = 0.1 Angstrom mag^-1, and a dispersion of ~0.05 Angstrom mag^-1 at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of A_V values. The subset of about 14,000 robustly detected DIB features have an exponential W_DIB distribution. We empirically determine the intrinsic rest wavelength of this transition to be lambda_0 = 15,272.42 Angstrom, and then calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scaleheight of about 100 pc and a scalelength of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the central long bar and the warp of the outer disk.
With the use of the data from archives, we studied the correlations between the equivalent widths of four diffuse interstellar bands (4430$r{A}$, 5780$r{A}$, 5797$r{A}$, 6284$r{A}$) and properties of the target stars (colour excess values, distances and Galactic coordinates). Many different plots of the diffuse interstellar bands and their maps were produced and further analysed. There appears to be a structure in the plot of equivalent widths of 5780$r{A}$ DIB (and 6284$r{A}$ DIB) against the Galactic $x$-coordinate. The structure is well defined below $sim150$ m$r{A}$ and within $|x|<250$ pc, peaking around $x=170$ pc. We argue that the origin of this structure is not a statistical fluctuation. Splitting the data in the Galactic longitude into several subregions improves or lowers the well known linear relation between the equivalent widths and the colour excess, which was expected. However, some of the lines of sight display drastically different behaviour. The region within $150^circ<l<200^circ$ shows scatter in the correlation plots with the colour excess for all of the four bands with correlation coefficients $textrm{R}<0.58$. We suspect that the variation of physical conditions in the nearby molecular clouds could be responsible. Finally, the area $250^circ<l<300^circ$ displays (from the statistical point of view) significantly lower values of equivalent widths than the other regions -- this tells us that there is either a significant underabundance of carriers (when compared with the other regions) or that this has to be a result of an observational bias.
Cyanogen (NCCN) is the simplest member of the dicyanopolyynes group, and has been proposed as a major source of the CN radical observed in cometary atmospheres. Although not detected through its rotational spectrum in the cold interstellar medium, th is very stable species is supposed to be very abundant. The chemistry of cyanogen in the cold interstellar medium can be investigated through its metastable isomer, CNCN (isocyanogen). Its formation may provide a clue on the widely abundant CN radical observed in cometary atmospheres. We performed an unbiased spectral survey of the L1544 proto-typical prestellar core, using the IRAM-30m and have analysed, for this paper, the nitrogen chemistry that leads to the formation of isocyanogen. We report on the first detection of CNCN, NCCNH+, C3N, CH3CN, C2H3CN, and H2CN in L1544. We built a detailed chemical network for NCCN/CNCN/HC2N2+ involving all the nitrogen bearing species detected (CN, HCN, HNC, C3N, CNCN, CH3CN, CH2CN, HCCNC, HC3N, HNC3, H2CN, C2H3CN, HCNH+, HC3NH+) and the upper limits on C4N, C2N. The main cyanogen production pathways considered in the network are the CN + HNC and N + C3N reactions. The comparison between the observations of the nitrogen bearing species and the predictions from the chemical modelling shows a very good agreement, taking into account the new chemical network. The expected cyanogen abundance is greater than the isocyanogen abundance by a factor of 100. Although cyanogen cannot be detected through its rotational spectrum, the chemical modelling predicts that it should be abundant in the gas phase and hence might be traced through the detection of isocyanogen. It is however expected to have a very low abundance on the grain surfaces compared to HCN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا