ترغب بنشر مسار تعليمي؟ اضغط هنا

An active state of the BL Lac Object Markarian 421 detected by INTEGRAL in April 2013

533   0   0.0 ( 0 )
 نشر من قبل Elena Pian
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Pian




اسأل ChatGPT حول البحث

Multiwavelength variability of blazars offers indirect insight into their powerful engines and on the mechanisms through which energy is propagated from the centre down the jet. The BL Lac object Mkn 421 is a TeV emitter, a bright blazar at all wavelengths, and therefore an excellent target for variability studies. Mkn 421 was observed by INTEGRAL and Fermi-LAT in an active state on 16-21 April 2013. Well sampled optical, soft, and hard X-ray light curves show the presence of two flares. The average flux in the 20-100 keV range is 9.1e-11 erg/s/cm2 (~4.5 mCrab) and the nuclear average apparent magnitude, corrected for Galactic extinction, is V ~12.2. In the time-resolved X-ray spectra (3.5-60 keV), which are described by broken power laws and, marginally better, by log-parabolic laws, we see a hardening that correlates with flux increase, as expected in refreshed energy injections in a population of electrons that later cool via synchrotron radiation. The hardness ratios between the JEM-X fluxes in two different bands and between the JEM-X and IBIS/ISGRI fluxes confirm this trend. During the observation, the variability level increases monotonically from the optical to the hard X-rays, while the large LAT errors do not allow a significant assessment of the MeV-GeV variability. The cross-correlation analysis during the onset of the most prominent flare suggests a monotonically increasing delay of the lower frequency emission with respect to that at higher frequency, with a maximum time-lag of about 70 minutes, that is however not well constrained. The spectral energy distributions from the optical to the TeV domain are satisfactorily described by homogeneous models of blazar emission based on synchrotron radiation and synchrotron self-Compton scattering, except in the state corresponding to the LAT softest spectrum and highest flux.



قيم البحث

اقرأ أيضاً

In September 2012, the high-synchrotron-peaked (HSP) blazar Markarian 421 underwent a rapid wideband radio flare, reaching nearly twice the brightest level observed in the centimeter band in over three decades of monitoring. In response to this event we carried out a five epoch centimeter- to millimeter-band multifrequency Very Long Baseline Array (VLBA) campaign to investigate the aftermath of this emission event. Rapid radio variations are unprecedented in this object and are surprising in an HSP BL Lac object. In this flare, the 15 GHz flux density increased with an exponential doubling time of about 9 days, then faded to its prior level at a similar rate. This is comparable with the fastest large-amplitude centimeter-band radio variability observed in any blazar. Similar flux density increases were detected up to millimeter bands. This radio flare followed about two months after a similarly unprecedented GeV gamma-ray flare (reaching a daily E>100 MeV flux of (1.2 +/- 0.7)x10^(-6) ph cm^(-2) s^(-1)) reported by the Fermi Large Area Telescope (LAT) collaboration, with a simultaneous tentative TeV detection by ARGO-YBJ. A cross-correlation analysis of long-term 15 GHz and LAT gamma-ray light curves finds a statistically significant correlation with the radio lagging ~40 days behind, suggesting that the gamma-ray emission originates upstream of the radio emission. Preliminary results from our VLBA observations show brightening in the unresolved core region and no evidence for apparent superluminal motions or substantial flux variations downstream.
A multifrequency campaign on the BL Lac object PG 1553+113 was organized by the Whole Earth Blazar Telescope (WEBT) in 2013 April-August, involving 19 optical, two near-IR, and three radio telescopes. The aim was to study the source behaviour at low energies during and around the high-energy observations by the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes in April-July. We also analyse the UV and X-ray data acquired by the Swift and XMM-Newton satellites in the same period. The WEBT and satellite observations allow us to detail the synchrotron emission bump in the source spectral energy distribution (SED). In the optical we found a general bluer-when-brighter trend. The X-ray spectrum remained stable during 2013, but a comparison with previous observations suggests that it becomes harder when the X-ray flux increases. The long XMM-Newton exposure reveals a curved X-ray spectrum. In the SED, the XMM-Newton data show a hard near-UV spectrum, while Swift data display a softer shape that is confirmed by previous HST-COS and IUE observations. Polynomial fits to the optical-X-ray SED show that the synchrotron peak likely lies in the 4-30 eV energy range, with a general shift towards higher frequencies for increasing X-ray brightness. However, the UV and X-ray spectra do not connect smoothly. Possible interpretations include: i) orientation effects, ii) additional absorption, iii) multiple emission components, and iv) a peculiar energy distribution of relativistic electrons. We discuss the first possibility in terms of an inhomogeneous helical jet model.
175 - V. Beckmann , C. Ricci , S. Soldi 2009
Multiwavelength observations are essential to constrain physical parameters of the blazars observed by Fermi/LAT. Among the 187 AGN significantly detected in public INTEGRAL data above 20 keV by the imager IBIS/ISGRI, 20 blazars were detected. 15 of these sources allowed significant spectral extraction. They show hard X-ray spectra with an average photon index of 2.1+-0.1 and a hard X-ray luminosity of L(20-100 keV) = 1.3e46 erg/s. 15 of the INTEGRAL blazars are also visible in the first 16 months of the Fermi/LAT data, thus allowing to constrain the inverse Compton branch in these cases. Among others, we analyse the LAT data of four blazars which were not included in the Fermi LAT Bright AGN Sample based on the first 3 months of the mission: QSO B0836+710, H 1426+428, RX J1924.8-2914, and PKS 2149-306. Especially for blazars during bright outbursts, as already observed simultaneously by INTEGRAL and Fermi (e.g. 3C 454.3 and Mrk 421), INTEGRAL provides unique spectral coverage up to several hundred keV. We present the spectral analysis of INTEGRAL and Fermi data and demonstrate the potential of INTEGRAL observations of Fermi detected blazars in outburst by analysing the combined data set of the persistent radio galaxy Cen A.
Markarian 421 (Mrk 421) is a high-synchrotron-peaked blazar showing relentless variability across the electromagnetic spectrum from radio to gamma-rays. We use over 7-years of radio and GeV observations to study the correlation and connected variabil ity in radio and GeV bands. Radio data was obtained in a 15GHz band by the OVRO 40-m radio telescope, and GeV data is from Fermi Large Area Telescope. To determine the location of the gamma-ray emission regions in Mrk 421 we correlate GeV and radio light curves. We found that GeV light curve varies independently and accurately leads the variations observed in radio. Using a fast-rise-slow-decay profile derived for shock propagation within a conical jet, we manage to reproduce the radio light curve from GeV variations. The profile rise time is comparable with the Fermi-LAT binning the decay time is about 7.6 days. The best-fit value for the response profile also features a 44 days delay between the GeV and radio, which is compatible with the wide lag range obtained from the correlation. Such a delay corresponds to $10^{17}$ cm/c, which is comparable with the apparent light crossing time of the Mrk 421 radio core. Generally, the observed variability matches the predictions of the leptonic models and suggests that the physical conditions vary in the jet. The emitting region moving downstream the jet, while the environment becomes first transparent to gamma rays and later to the radio.
We locate the gamma-ray and lower frequency emission in flares of the BL Lac object AO 0235+164 at >12pc in the jet of the source from the central engine. We employ time-dependent multi-spectral-range flux and linear polarization monitoring observati ons, as well as ultra-high resolution (~0.15 milliarcsecond) imaging of the jet structure at lambda=7mm. The time coincidence in the end of 2008 of the propagation of the brightest superluminal feature detected in AO 0235+164 (Qs) with an extreme multi-spectral-range (gamma-ray to radio) outburst, and an extremely high optical and 7mm (for Qs) polarization degree provides strong evidence supporting that all these events are related. This is confirmed at high significance by probability arguments and Monte-Carlo simulations. These simulations show the unambiguous correlation of the gamma-ray flaring state in the end of 2008 with those in the optical, millimeter, and radio regime, as well as the connection of a prominent X-ray flare in October 2008, and of a series of optical linear polarization peaks, with the set of events in the end of 2008. The observations are interpreted as the propagation of an extended moving perturbation through a re-collimation structure at the end of the jets acceleration and collimation zone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا