ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the plasma astrophysical S factor for the 3He(D, p)4He reaction in exploding molecular clusters

103   0   0.0 ( 0 )
 نشر من قبل Marina Barbui
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The plasma astrophysical S factor for the 3He(D, p)4He fusion reaction was measured for the first time at temperatures of few keV, using the interaction of intense ultrafast laser pulses with molecular deuterium clusters mixed with 3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the gas jet target in order to allow the measurement of the cross-section for the 3He(D, p)4He reaction. The yield of 14.7 MeV protons from the 3He(D, p)4He reaction was measured in order to extract the astrophysical S factor at low energies. Our result is in agreement with other S factor parameterizations found in the literature.



قيم البحث

اقرأ أيضاً

In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 15 0-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S-factor using the measured energy distribution of the ions, the measured volume of the fusion plasma and the measured fusion yields. This method is model-independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution especially at high energies and of the relevant fusion yields. In the d(d,n)$^{3}$He and $^{3}$He(d,p)$^{4}$He cases discussed here, it is very important to apply the background subtraction for the energetic ions and to measure the fusion yields with high precision. While the available data on both ion distribution and fusion yields allow us to determine with good precision the S-factor in the d+d case (lower Gamow energies), for the d+$^3$He case the data are not precise enough to obtain the S-factor using this method. Our results agree with other experiments within the experimental error, even though smaller values of the S-factor were obtained. This might be due to the plasma environment differing from the beam target conditions in a conventional accelerator experiment.
Solar neutrino fluxes depend both on astrophysical and on nuclear physics inputs, namely on the cross sections of the reactions responsible for neutrino production inside the Solar core. While the flux of solar 8B neutrinos has been recently measured at Superkamiokande with a 3.5% uncertainty and a precise measurement of 7Be neutrino flux is foreseen in the next future, the predicted fluxes are still affected by larger errors. The largest nuclear physics uncertainty to determine the fluxes of 8B and 7Be neutrinos comes from the 3He(alpha,gamma)7Be reaction. The uncertainty on its S-factor is due to an average discrepancy in results obtained using two different experimental approaches: the detection of the delayed gamma rays from 7Be decay and the measurement of the prompt gamma emission. Here we report on a new high precision experiment performed with both techniques at the same time. Thanks to the low background conditions of the Gran Sasso LUNA accelerator facility, the cross section has been measured at Ecm = 170, 106 and 93 keV, the latter being the lowest interaction energy ever reached. The S-factors from the two methods do not show any discrepancy within the experimental errors. An extrapolated S(0)= 0.560+/-0.017 keV barn is obtained. Moreover, branching ratios between the two prompt gamma-transitions have been measured with 5-8% accuracy.
The $^{14}textrm{N(p,}gammatextrm{)}^{15}textrm{O}$ reaction is the slowest reaction of the carbon-nitrogen cycle of hydrogen burning and thus determines its rate. The precise knowledge of its rate is required to correctly model hydrogen burning in a symptotic giant branch stars. In addition, it is a necessary ingredient for a possible solution of the solar abundance problem by using the solar $^{13}$N and $^{15}$O neutrino fluxes as probes of the carbon and nitrogen abundances in the solar core. After the downward revision of its cross section due to a much lower contribution by one particular transition, capture to the ground state in $^{15}$O, the evaluated total uncertainty is still 8%, in part due to an unsatisfactory knowledge of the excitation function over a wide energy range. The present work reports precise S-factor data at twelve energies between 0.357-1.292~MeV for the strongest transition, capture to the 6.79~MeV excited state in $^{15}$O, and at ten energies between 0.479-1.202~MeV for the second strongest transition, capture to the ground state in $^{15}$O. An R-matrix fit is performed to estimate the impact of the new data on astrophysical energies. The recently suggested slight enhancement of the 6.79~MeV transition at low energy could not be confirmed. The present extrapolated zero-energy S-factors are $S_{6.79}(0)$~=~1.24$pm$0.11~keV~barn and $S_{rm GS}(0)$~=~0.19$pm$0.05~keV~barn.
The 15N(p,g)16O reaction represents a break out reaction linking the first and second cycle of the CNO cycles redistributing the carbon and nitrogen abundances into the oxygen range. The reaction is dominated by two broad resonances at Ep = 338 keV a nd 1028 keV and a Direct Capture contribution to the ground state of 16O. Interference effects between these contributions in both the low energy region (Ep < 338 keV) and in between the two resonances (338 <Ep < 1028 keV) can dramatically effect the extrapolation to energies of astrophysical interest. To facilitate a reliable extrapolation the 15N(p,g)16O reaction has been remeasured covering the energy range from Ep=1800 keV down to 130 keV. The results have been analyzed in the framework of a multi-level R-matrix theory and a S(0) value of 39.6 keV b has been found.
703 - A. Banu , T. Al-Abdullah , C. Fu 2008
The cross section of the radiative proton capture reaction on the drip line nucleus 12N was investigated using the Asymptotic Normalization Coefficient (ANC) method. We have used the 14N(12N,13O)13C proton transfer reaction at 12 MeV/nucleon to extra ct the ANC for 13O -> 12N + p and calculate from it the direct component of the astrophysical S factor of the 12N(p,gamma)13O reaction. The optical potentials used and the DWBA analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out at the same time with the transfer measurement. From the transfer, we determined the square of the ANC, C^2(13Og.s.) = 2.53 +/- 0.30 fm-1, and hence a value of 0.33(4) keVb was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of Stotal(0) = 0.42(5) keVb. The 12N(p,gamma)13O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا