ﻻ يوجد ملخص باللغة العربية
Due to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extra-solar planets is of great relevance. Furthermore, precise stellar parameters are needed to fully characterize the planet properties. It is thus important to continue the efforts to determine, in the most uniform way possible, the parameters for stars with planets as new discoveries are announced. In this paper we present new precise atmospheric parameters for a sample of 48 stars with planets. We then take the opportunity to present a new catalogue of stellar parameters for FGK and M stars with planets detected by radial velocity, transit, and astrometry programs. Stellar atmospheric parameters and masses for the 48 stars were derived assuming LTE and using high resolution and high signal-to-noise spectra. The methodology used is based on the measurement of equivalent widths for a list of iron lines and making use of iron ionization and excitation equilibrium principles. For the catalog, and whenever possible, we used parameters derived in previous works published by our team, using well defined methodologies for the derivation of stellar atmospheric parameters. This set of parameters amounts to over 65% of all planet host stars known, including more than 90% of all stars with planets discovered through radial velocity surveys. For the remaining targets, stellar parameters were collected from the literature.
The study of chemical abundances in stars with planets is an important ingredient for the models of formation and evolution of planetary systems. In order to determine accurate abundances, it is crucial to have a reliable set of atmospheric parameter
Context: Thanks to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extrasolar planets is of great rele
Context: Exoplanets have now been proven to be very common. The number of its detections continues to grow following the development of better instruments and missions. One key step for the understanding of these worlds is their characterization, whi
The detection and subsequent characterisation of exoplanets are intimately linked to the characteristics of their host star. Therefore, it is necessary to study the star in detail in order to understand the formation history and characteristics of th
Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the H-R diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of st