ترغب بنشر مسار تعليمي؟ اضغط هنا

Helium Compton Form Factor Measurements at CLAS

146   0   0.0 ( 0 )
 نشر من قبل Eric Voutier
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Eric Voutier




اسأل ChatGPT حول البحث

The distribution of the parton content of nuclei, as encoded via the generalized parton distributions (GPDs), can be accessed via the deeply virtual Compton scattering (DVCS) process contributing to the cross section for leptoproduction of real photons. Similarly to the scattering of light by a material, DVCS provides information about the dynamics and the spatial structure of hadrons. The sensitivity of this process to the lepton beam polarization allows to single-out the DVCS amplitude in terms of Compton form factors that contain GPDs information. The beam spin asymmetry of the $^4$He($vec {mathrm e}$,e$ gamma ^4$He) process was measured in the experimental Hall B of the Jefferson Laboratory to extract the real and imaginary parts of the twist-2 Compton form factor of the $^4$He nucleus. The experimental results reported here demonstrate the relevance of this method for such a goal, and suggest the dominance of the Bethe-Heitler amplitude to the unpolarized process in the kinematic range explored by the experiment.



قيم البحث

اقرأ أيضاً

83 - B. S. Schlimme 2021
Measurements of the electric and the magnetic neutron form factors have been performed at the Mainz Microtron for more than 20 years. These MAMI experiments are reviewed in the context of measurements from other groups, and future measurements at MAMI are outlined.
141 - Silvia Niccolai 2012
This paper focuses on a measurement of deeply virtual Compton scattering (DVCS) performed at Jefferson Lab using a nearly-6-GeV polarized electron beam, two longitudinally polarized (via DNP) solid targets of protons (NH3) and deuterons (ND3) and the CEBAF Large Acceptance Spectrometer. Here, preliminary results for target-spin asymmetries and double (beam-target) asymmetries for proton DVCS, as well as a very preliminary extraction of beam-spin asymmetry for neutron DVCS, are presented and linked to Generalized Parton Distributions.
We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off $^4$He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a press urized $^4$He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling $^4$He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the coherent ($e^4$He$~to~e$$^4$He$gamma$) beam spin asymmetries compared to those observed on the free proton, while the incoherent ($e^4$He$~to~e$p$gamma$X$$) asymmetries exhibit a 30$%$ suppression. From the coherent data, we were able to extract, in a model-independent way, the real and imaginary parts of the only $^4$He Compton form factor, $cal H_A$, leading the way toward 3D imaging of the partonic structure of nuclei.
The electromagnetic form factors of the nucleon characterize the effect of its internal structure on its response to an electromagnetic probe as studied in elastic electron-nucleon scattering. These form factors are functions of the squared four-mome ntum transfer $Q^2$ between the electron and the proton. The two main classes of observables of this reaction are the scattering cross section and polarization asymmetries, both of which are sensitive to the form factors in different ways. When considering large momentum transfers, double-polarization observables offer superior sensitivity to the electric form factor. This thesis reports the results of a new measurement of the ratio of the electric and magnetic form factors of the proton at high momentum transfer using the recoil polarization technique. A polarized electron beam was scattered from a liquid hydrogen target, transferring polarization to the recoiling protons. These protons were detected in a magnetic spectrometer which was used to reconstruct their kinematics, including their scattering angles and momenta, and the position of the interaction vertex. A proton polarimeter measured the polarization of the recoiling protons by measuring the azimuthal asymmetry in the angular distribution of protons scattered in CH$_2$ analyzers. The scattered electron was detected in a large-acceptance electromagnetic calorimeter in order to suppress inelastic backgrounds. The measured ratio of the transverse and longitudinal polarization components of the scattered proton is directly proportional to the ratio of form factors $G_E^p/G_M^p$. The measurements reported in this thesis took place at $Q^2=$5.2, 6.7, and 8.5 GeV$^2$, and represent the most accurate measurements of $G_E^p$ in this $Q^2$ region to date.
Among the most fundamental observables of nucleon structure, electromagnetic form factors are a crucial benchmark for modern calculations describing the strong interaction dynamics of the nucleons quark constituents; indeed, recent proton data have a ttracted intense theoretical interest. In this letter, we report new measurements of the proton electromagnetic form factor ratio using the recoil polarization method, at momentum transfers Q2=5.2, 6.7, and 8.5 GeV2. By extending the range of Q2 for which GEp is accurately determined by more than 50%, these measurements will provide significant constraints on models of nucleon structure in the non-perturbative regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا