ﻻ يوجد ملخص باللغة العربية
Exact configurations of the four dimensional Skyrme model are presented. The static configurations have the profile which behaves as a kink and, consequently, the corresponding energy momentum tensor describes a domain wall. Furthermore, a class of exact time periodic Skyrmions is discovered. Within such class, it is possible to disclose a remarkable phenomenon which is a genuine effect of the Skyrme term. For a special value of the frequency the Skyrmions admit a non linear superposition principle. One can combine two or more exact elementary Skyrmions (which may depend in a non trivial way on all the space like coordinates) into a new exact composite Skyrmion. Due to such superposition law, despite the explicit presence of non linear effects in the energy momentum tensor, the interaction energy between the elementary Skyrmions can be computed exactly. The relations with the appearance of Skyrme crystals is discussed.
We apply the dressing method on the Non Linear Sigma Model (NLSM), which describes the propagation of strings on $mathbb{R}times mathrm{S}^2$, for an arbitrary seed. We obtain a formal solution of the corresponding auxiliary system, which is expresse
We investigate a (1+1)-dimensional nonlinear field theoretic model with the field potential $V(phi)| = |phi|.$ It can be obtained as the universal small amplitude limit in a class of models with potentials which are symmetrically V-shaped at their mi
Recently, it has been recently shown that the linear response theory in symmetric nuclear matter can be used as a tool to detect finite size instabilities for different Skyrme functionals. In particular it has been shown that there is a correlation b
We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet con
In this lecture we outline the main results of our investigations of certain field-theoretic systems which have V-shaped field potential. After presenting physical examples of such systems, we show that in static problems the exact ground state value