ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic plasmons in extrinsic free-standing graphene

199   0   0.0 ( 0 )
 نشر من قبل Michele Pisarra
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the very same 2D band of extrinsic (doped or gated) graphene. The origin of this novel mode resides in the strong anisotropy that is present in the graphene band structure near the Dirac point. This anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the Gamma-K direction, which leads to two modes of collective oscillation: one mode in which the two types of electrons oscillate in phase with one another [this is the conventional 2D graphene plasmon, which at long wavelengths (q->0) has the same dispersion, q^1/2, as the conventional 2D plasmon of a 2D free electron gas], and the other mode found here corresponding to a low-frequency acoustic oscillation [whose energy exhibits at long wavelengths a linear dependence on the 2D wavenumber q] in which the two types of electrons oscillate out of phase. If this prediction is confirmed experimentally, it will represent the first realization of acoustic plasmons originated in the collective motion of a system of two types of carriers coexisting within the very same band.



قيم البحث

اقرأ أيضاً

96 - Luca Salasnich 2021
We study the effect of two metallic slabs on the collective dynamics of electrons in graphene positioned between the two slabs. We show that if the slabs are perfect conductors the plasmons of graphene display a linear dispersion relation. The veloci ty of these acoustic plasmons crucially depends on the distance between the two metal gates and the graphene sheet. In the case of generic slabs, the dispersion relation of graphene plasmons is much more complicated but we find that acoustic plasmons can still be obtained under specific conditions.
270 - E. H. Hwang , S. Das Sarma 2008
We theoretically calculate the phonon scattering limited electron mobility in extrinsic (i.e. gated or doped with a tunable and finite carrier density) 2D graphene layers as a function of temperature $(T)$ and carrier density $(n)$. We find a tempera ture dependent phonon-limited resistivity $rho_{ph}(T)$ to be linear in temperature for $Tagt 50 K$ with the room temperature intrinsic mobility reaching values above $10^5$ cm$^2/Vs$. We comment on the low-temperature Bloch-Gr{u}neisen behavior where $rho_{ph}(T) sim T^4$ for unscreened electron-phonon coupling.
Similar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. Modification of acoustic phonon spectrum in structures with periodically modulated elastic constant or mass density - referred to as ph ononic crystals - has been proven experimentally and utilized in practical applications. A possibility of modifying acoustic phonon spectrum in individual nanostructures via spatial confinement would bring tremendous benefits for controlling phonon-electron interaction and thermal conduction at nanoscale. However, despite strong scientific and practical importance, conclusive experimental evidence of acoustic phonon confinement in individual free-standing nanostructures, e.g. nanowires, is still missing. The length scale, at which phonon dispersion undergoes changes and a possibility of the phonon group velocity reduction, are debated. Here, we utilize specially designed high-quality GaAs nanowires (NWs) with different diameters, D, and large inter-nanowire distances to directly demonstrate acoustic phonon confinement. The measurements conducted with Brillouin - Mandelstam spectroscopy reveal confined phonon polarization branches with frequencies from 4 GHz to 40 GHz in NWs with D as large as ~128 nm, i.e. at length scale, which exceeds the grey phonon mean-free path in GaAs by an almost an order of magnitude. The phonon dispersion modification and phonon energy scaling with D in individual nanowires are in excellent agreement with theory. The obtained results can lead to more efficient nanoscale control of acoustic phonons, with benefits for nanoelectronics, thermoelectric energy conversion, thermal management, and novel spintronic technologies.
The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. Th e question we explore here is whether that is still valid on a 2D membrane such as graphene at short sheet length. By means of a non-equilibrium molecular dynamics study of a test system -- a gold nanocluster adsorbed on free-standing graphene clamped between two temperatures $Delta T$ apart -- we find a phoretic force which for submicron sheet lengths is parallel to, but basically independent of, the local gradient magnitude. This identifies a thermophoretic regime that is ballistic rather than diffusive, persisting up to and beyond a hundred nanometer sheet length. Analysis shows that the phoretic force is due to the flexural phonons, whose flow is known to be ballistic and distance-independent up to relatively long mean-free paths. Yet, ordinary harmonic phonons should only carry crystal momentum and, while impinging on the cluster, should not be able to impress real momentum. We show that graphene, and other membrane-like monolayers, support a specific anharmonic connection between the flexural corrugation and longitudinal phonons whose fast escape leaves behind a 2D-projected mass density increase endowing the flexural phonons, as they move with their group velocity, with real momentum, part of which is transmitted to the adsorbate through scattering. The resulting distance-independent ballistic thermophoretic force is not unlikely to possess practical applications.
Non-reciprocal plasmons in current-driven, isotropic, and homogenous graphene with proximal metallic gates is theoretically explored. Nearby metallic gates screen the Coulomb interactions, leading to linearly dispersive acoustic plasmons residing clo se to its particle-hole continuum counterpart. We show that the applied bias leads to spectral broadband focused plasmons whose resonance linewidth is dependent on the angular direction relative to the current flow due to Landau damping. We predict that forward focused non-reciprocal plasmons are possible with accessible experimental parameters and setup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا