ﻻ يوجد ملخص باللغة العربية
The aim of this report of the Working Group on Hadronic Interactions and Air Shower Simulation is to give an overview of the status of the field, emphasizing open questions and a comparison of relevant results of the different experiments. It is shown that an approximate overall understanding of extensive air showers and the corresponding hadronic interactions has been reached. The simulations provide a qualitative description of the bulk of the air shower observables. Discrepancies are however found when the correlation between measurements of the longitudinal shower profile are compared to that of the lateral particle distributions at ground. The report concludes with a list of important problems that should be addressed to make progress in understanding hadronic interactions and, hence, improve the reliability of air shower simulations.
The radio detection method for cosmic rays relies on coherent emission from electrons and positrons which is beamed in a narrow cone along the shower axis. Currently the only mod- els to reproduce this emission with sufficient accuracy are Monte Carl
A precise understanding of the radio emission from extensive air showers is of fundamental importance for the design of cosmic ray radio detectors as well as the analysis and interpretation of their data. In recent years, tremendous progress has been
Two unusual neutrino events in the Antarctic Impulse Transient Antenna (ANITA) appear to have been generated by air showers from a particle emerging from the Earth at angles 25-35 degrees above the horizon. We evaluate the effective aperture for ANIT
We present an evaluation of a simulated cosmic ray shower, based on {sc geant4} and {sc top-c}, which tracks all the particles in the shower. {sc top-c} (Task Oriented Parallel C) provides a framework for parallel algorithm development which makes tr
Cosmic rays provide an unique approach to study hadronic interactions at high energies in the kinematic forward direction. The KASCADE air shower experiment was the first to conduct quantitative tests of hadronic interactions with air shower data. A